论文标题

联合域的概括用于图像识别通过跨客户样式转移

Federated Domain Generalization for Image Recognition via Cross-Client Style Transfer

论文作者

Chen, Junming, Jiang, Meirui, Dou, Qi, Chen, Qifeng

论文摘要

域概括(DG)一直是图像识别的热门话题,其目标是训练可以在看不见的域上表现良好的通用模型。最近,Federated Learning(FL)是一种新兴的机器学习范式,旨在培训来自多个分散客户的全球模型,而不会损害数据隐私,从而为DG带来了新的挑战,也是新的可能性。在FL方案中,许多现有的最先进(SOTA)DG方法变得无效,因为它们需要在训练过程中从不同领域进行数据集中。在本文中,我们提出了一种新型的域概括方法,用于通过交叉客户样式转移(CCST)在联邦学习下进行图像识别方法,而无需交换数据样本。我们的CCST方法可以导致源客户端的更均匀的分布,从而使每个本地模型都学会符合所有客户端的图像样式,以避免不同的模型偏见。建议根据不同的方案选择两种具有相应机制的样式(单图样式和整体域样式)。我们的样式表示形式非常轻巧,几乎不可用于重建数据集。多样性水平也可以灵活地通过高参数控制。我们的方法在FL环境中的两个DG基准(PAC,OfficeHome)和一个大规模的医疗图像数据集(CamelyOn17)上的最新SOTA DG方法优于最近的SOTA DG方法。最后但并非最不重要的一点是,我们的方法与许多经典的DG方法正交,通过合并利用来实现添加性能。

Domain generalization (DG) has been a hot topic in image recognition, with a goal to train a general model that can perform well on unseen domains. Recently, federated learning (FL), an emerging machine learning paradigm to train a global model from multiple decentralized clients without compromising data privacy, brings new challenges, also new possibilities, to DG. In the FL scenario, many existing state-of-the-art (SOTA) DG methods become ineffective, because they require the centralization of data from different domains during training. In this paper, we propose a novel domain generalization method for image recognition under federated learning through cross-client style transfer (CCST) without exchanging data samples. Our CCST method can lead to more uniform distributions of source clients, and thus make each local model learn to fit the image styles of all the clients to avoid the different model biases. Two types of style (single image style and overall domain style) with corresponding mechanisms are proposed to be chosen according to different scenarios. Our style representation is exceptionally lightweight and can hardly be used for the reconstruction of the dataset. The level of diversity is also flexible to be controlled with a hyper-parameter. Our method outperforms recent SOTA DG methods on two DG benchmarks (PACS, OfficeHome) and a large-scale medical image dataset (Camelyon17) in the FL setting. Last but not least, our method is orthogonal to many classic DG methods, achieving additive performance by combined utilization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源