论文标题
截断的广义相干状态
Truncated generalized coherent states
论文作者
论文摘要
通过需要正常定式的条件,标签中的连续性和具有正权重函数的身份操作员的连续性,对量子谐波振荡器的规范相干状态进行了概括。依靠这种方法,在当前情况下,相干状态被概括为谐波振荡器的规范或有限维数空间。确定了一类广义相干状态,以使激发次数的分布根据拉伸指数衰减,功率定律和对数形式的组合脱离泊松统计。根据确定的性质,对曼德尔参数的分析表明,这些广义相干状态表现出(非古典)亚硫磺酸或超级波多桑尼亚统计数据,这些统计数据是标记的小值的激发数量。对于大量标签值,该统计数字是独特的亚poissonian。作为特定情况,截断的赖特广泛的相干状态具有独特的非古典性质,与截短的Mittag-Leffler广义相干状态不同。
A generalization of the canonical coherent states of a quantum harmonic oscillator has been performed by requiring the conditions of normalizability, continuity in the label and resolution of the identity operator with a positive weight function. Relying on this approach, in the present scenario coherent states are generalized over the canonical or finite dimensional Fock space of the harmonic oscillator. A class of generalized coherent states is determined such that the distribution of the number of excitations departs from the Poisson statistics according to combinations of stretched exponential decays, power laws and logarithmic forms. The analysis of the Mandel parameter shows that these generalized coherent states exhibit (non-classical) sub-Poissonian or super-Poissonian statistics of the number of excitations for small values of the label, according to determined properties. The statistics is uniquely sub-Poissonian for large values of the label. As particular cases, truncated Wright generalized coherent states exhibit uniquely non-classical properties, differently from the truncated Mittag-Leffler generalized coherent states.