论文标题

应变能密度作为高斯工艺及其在随机有限元分析中的利用:应用于平面软组织

Strain energy density as a Gaussian process and its utilization in stochastic finite element analysis: application to planar soft tissues

论文作者

Aggarwal, Ankush, Jensen, Bjørn Sand, Pant, Sanjay, Lee, Chung-Hao

论文摘要

基于数据的方法是固体力学传统分析本构模型的有希望的替代方法。本文中,我们提出了一个基于高斯工艺(GP)的组成型建模框架,专门针对平面,超弹性和不可压缩软组织。软组织的应变能密度被建模为GP,可以将其回归为从双轴实验获得的实验应力应变数据。此外,GP模型可能会弱限制为凸。基于GP的模型的关键优势是,除了平均值外,它还为应变能密度提供了概率密度(即相关的不确定性)。为了模拟这种不确定性的效果,提出了非侵入的随机有限元分析(SFEA)框架。针对基于Gasser的人工数据集验证了所提出的框架 - 基因 - 霍尔扎普尔模型,并应用于猪主动脉瓣膜组织的真实实验数据集。结果表明,所提出的框架可以使用有限的实验数据训练,并且比现有模型更适合数据。 SFEA框架提供了一种使用实验数据并量化基于仿真预测的不确定性的直接方法。

Data-based approaches are promising alternatives to the traditional analytical constitutive models for solid mechanics. Herein, we propose a Gaussian process (GP) based constitutive modeling framework, specifically focusing on planar, hyperelastic and incompressible soft tissues. The strain energy density of soft tissues is modeled as a GP, which can be regressed to experimental stress-strain data obtained from biaxial experiments. Moreover, the GP model can be weakly constrained to be convex. A key advantage of a GP-based model is that, in addition to the mean value, it provides a probability density (i.e. associated uncertainty) for the strain energy density. To simulate the effect of this uncertainty, a non-intrusive stochastic finite element analysis (SFEA) framework is proposed. The proposed framework is verified against an artificial dataset based on the Gasser--Ogden--Holzapfel model and applied to a real experimental dataset of a porcine aortic valve leaflet tissue. Results show that the proposed framework can be trained with limited experimental data and fits the data better than several existing models. The SFEA framework provides a straightforward way of using the experimental data and quantifying the resulting uncertainty in simulation-based predictions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源