论文标题
基于NAS的递归阶段部分网络(RSPNET),用于轻巧的语义分割
NAS-based Recursive Stage Partial Network (RSPNet) for Light-Weight Semantic Segmentation
论文作者
论文摘要
当前基于NAS的语义分割方法着重于准确性改进,而不是轻重量设计。在本文中,我们提出了一个两阶段的框架,以设计基于NAS的RSPNET模型,用于轻重量的语义分割。第一个体系结构搜索确定了内部单元格结构,第二个体系结构搜索考虑了成倍增长的路径,以最终确定网络的外部结构。文献中显示,高分辨率和低分辨率特征图的融合会产生更强的表示。为了找到没有手动设计的预期宏观结构,我们采用了一种新的路径注意机制来有效地寻找合适的路径,以融合有用的信息以更好地分割。我们从单元格中寻找可重复的微结构导致语义分割中的卓越网络体系结构。此外,我们提出了一个RSP(递归阶段的部分)体系结构,以搜索基于NAS的语义分割的轻重量设计。所提出的架构非常有效,简单且有效,可以在两个V100 GPU上计算的五天内完成宏观和微型结构搜索。 SOTA体系结构只有1/4参数大小的轻型NAS体系结构可以在不使用任何骨架的情况下在CityScapes数据集上的语义细分方面实现SOTA性能。
Current NAS-based semantic segmentation methods focus on accuracy improvements rather than light-weight design. In this paper, we proposed a two-stage framework to design our NAS-based RSPNet model for light-weight semantic segmentation. The first architecture search determines the inner cell structure, and the second architecture search considers exponentially growing paths to finalize the outer structure of the network. It was shown in the literature that the fusion of high- and low-resolution feature maps produces stronger representations. To find the expected macro structure without manual design, we adopt a new path-attention mechanism to efficiently search for suitable paths to fuse useful information for better segmentation. Our search for repeatable micro-structures from cells leads to a superior network architecture in semantic segmentation. In addition, we propose an RSP (recursive Stage Partial) architecture to search a light-weight design for NAS-based semantic segmentation. The proposed architecture is very efficient, simple, and effective that both the macro- and micro- structure searches can be completed in five days of computation on two V100 GPUs. The light-weight NAS architecture with only 1/4 parameter size of SoTA architectures can achieve SoTA performance on semantic segmentation on the Cityscapes dataset without using any backbones.