论文标题
使用多尺度标识的最佳混合策略的péclet-number依赖性
Péclet-number dependence of optimal mixing strategies identified using multiscale norms
论文作者
论文摘要
在有限的péclet数字$ pe = uh/κ$(其中$ u,h $是特征性速度和长度尺度和$κ$的特征性速度)中优化被动标量$ pe = uh/κ$是标量扩散率)与科学和工程的许多重要流动挑战有关。尽管许多工作集中在确定有助于混合$ pe $的流量的流动结构上,但对初始标量分布的基础结构如何影响混合的基础结构的关注相对较少。在这项研究中,我们着重于研究此问题的两个问题问题。我们的方法采用非线性直接聚会环路(DAL)方法来计算流体速度字段,该场在有限的目标时间优化了多尺度标准的多尺度(表示我们标量的“混合性”)。首先,我们研究了最佳初始速度扰动的结构如何以及随后的标量和圆盘状的直线“条纹”与圆盘状的“滴”之间的混合变化。我们发现,随之而来的初始速度扰动的搅拌取决于初始标量分布的几何形状。 其次,我们检查了标量的多个初始“滴”晶格的情况,并研究了最佳扰动的结构如何随着滴度尺度而不是域尺度定义的适当缩放的péclet数量而变化。我们发现,随着跌落数量和$ pe $的增加,我们观察到的最佳初始速度扰动的特征结构可以维持。但是,特征性的涡旋结构{\ color {red {red}和相关的混合表现出一些非局部变异性,这表明将重新缩放到本地$ pe $ {\ color {red {red}}不会捕获所有重要的流动动力学。
The optimization of the mixing of a passive scalar at finite Péclet number $Pe=Uh/κ$ (where $U,h$ are characteristic velocity and length scales and $κ$ is the scalar diffusivity) is relevant to many significant flow challenges across science and engineering. While much work has focused on identifying flow structures conducive to mixing for flows with various values of $Pe$, there has been relatively little attention paid to how the underlying structure of initial scalar distribution affects the mixing achieved. In this study we focus on two problems of interest investigating this issue. Our methods employ a nonlinear direct-adjoint looping (DAL) method to compute fluid velocity fields which optimize a multiscale norm (representing the `mixedness' of our scalar) at a finite target time. First, we investigate how the structure of optimal initial velocity perturbations and the subsequent mixing changes between initially rectilinear `stripes' of scalar and disc-like `drops'. We find that the ensuing stirring of the initial velocity perturbations varies considerably depending on the geometry of the initial scalar distribution. Secondly, we examine the case of lattices of multiple initial `drops' of scalar and investigate how the structure of optimal perturbations varies with appropriately scaled Péclet number defined in terms of the drop scale rather than the domain scale. We find that the characteristic structure of the optimal initial velocity perturbation we observe for a single drop is upheld as the number of drops and $Pe$ increase. However, the characteristic vortex structure {\color{red} and associated mixing exhibits some nonlocal variability,} suggesting that rescaling to a local $Pe$ {\color{red} will} not capture all the significant flow dynamics.