论文标题
球形对称,静态黑洞,带有标量的头发和非微小耦合k-效果
Spherically symmetric, static black holes with scalar hair, and naked singularities in nonminimally coupled k-essence
论文作者
论文摘要
我们基于非正交双叶叶叶的最近开发的2+1+1分解,以研究Horndeski标量探测理论的球形对称,静态黑洞溶液。我们的讨论以修饰的重力方法的有效田间理论(EFT)进行,其作用取决于指标和嵌入标量适应于非正交2+1+1分解。我们证明,最通用的Horndeski Lagrangians与观察兼容的角度可以以这种EFT形式表达。通过研究EFT动作的一阶扰动,我们得出了三个运动方程,这些方程还原为较早在正交2+1+1分解中的运动方程,以及与叶子非正交性相关的度量参数n的第四个方程。对于Horndeski的理论类别,具有消失的$ G_3 $和$ G_5 $,但是通用功能$ G_2(ϕ,X)$(k-Essence)和$ g_4(ϕ)$(与度量标准的非微耦合)我们证明,我们证明无需采取EINSTEIN-HILBERT允许Schwarzceck s schwarzck schwarzcecl允许的行动。接下来,我们将案例的EFT场方程集成在一起,只有一个独立的度量函数获得的新解决方案,其特征在于被解释为质量或潮汐电荷的参数,宇宙常数和第三个参数。这些解决方案代表裸露的奇异性,带有标量头发的黑洞或具有Schwarzschild的双层结构 - 保姆时空。具有同质Kantowski-Sachs型区域的解决方案也出现了。最后,在曲率坐标中为函数$ g_4 $线性获得的解决方案之一,在某些参数范围内表现出一个有趣的对数奇异性,位于地平线外。新衍生的毛茸茸的黑洞解决方案即使在没有宇宙常数的情况下,即使是渐近的非flat,也是通过渐近的非纤维来逃避了以前已知的单一定理。
We apply a recently developed 2+1+1 decomposition of spacetime, based on a nonorthogonal double foliation for the study of spherically symmetric, static black hole solutions of Horndeski scalar-tensor theory. Our discussion proceeds in an effective field theory (EFT) of modified gravity approach, with the action depending on metric and embedding scalars adapted to the nonorthogonal 2+1+1 decomposition. We prove that the most generic class of Horndeski Lagrangians compatible with observations can be expressed in this EFT form. By studying the first order perturbation of the EFT action we derive three equations of motion, which reduce to those derived earlier in an orthogonal 2+1+1 decomposition, and a fourth equation for the metric parameter N related to the nonorthogonality of the foliation. For the Horndeski class of theories with vanishing $G_3$ and $G_5$, but generic functions $G_2(ϕ,X)$ (k-essence) and $G_4(ϕ)$ (nonminimal coupling to the metric) we prove the unicity theorem that no action beyond Einstein--Hilbert allows for the Schwarzschild solution. Next we integrate the EFT field equations for the case with only one independent metric function obtaining new solutions characterized by a parameter interpreted as either mass or tidal charge, the cosmological constant and a third parameter. These solutions represent naked singularities, black holes with scalar hair or have the double horizon structure of the Schwarzschild--de Sitter spacetime. Solutions with homogeneous Kantowski--Sachs type regions also emerge. Finally, one of the solutions obtained for the function $G_4$ linear in the curvature coordinate, in certain parameter range exhibits an intriguing logarithmic singularity lying outside the horizon. The newly derived hairy black hole solutions evade previously known unicity theorems by being asymptotically nonflat, even in the absence of the cosmological constant.