论文标题
Swift Markov逻辑用于知识图上的概率推理
Swift Markov Logic for Probabilistic Reasoning on Knowledge Graphs
论文作者
论文摘要
我们为基于Vadalog的知识图(KGS)提供了一个概率推理的框架,满足本体论推理的要求:完整的递归,强大的存在量化,归纳定义的表达。 vadalog是基于沃德数据+/-的知识表示和推理(KRR)语言,这是一种存在规则的逻辑核心语言,在计算复杂性和表达能力之间取得了良好的平衡。处理不确定性对于与KGS推理至关重要。然而,由于几个原因,现有的概率逻辑编程和统计关系学习方法,vadalog和沃德数据+/-并未涵盖,包括对生存量化的递归的支持不足,以及表达归纳定义的不可能。在这项工作中,我们介绍了软瓦达格(Vadalog),这是vadalog的概率扩展,满足了这些desiderata。软vadalog程序诱导了我们所谓的概率知识图(PKG),该图形由追逐实例网络上的概率分布组成,通过使用Chase过程将规则扎根于数据库中获得的结构。我们利用PKG进行概率的边际推断。我们讨论了该理论,并目前是MCMC-Chase,这是一种在实践中使用软vadalog的蒙特卡洛方法。我们将框架应用于解决数据管理和工业问题,并在Vadalog系统中对其进行实验评估。 在逻辑编程(TPLP)的理论和实践中考虑的。
We provide a framework for probabilistic reasoning in Vadalog-based Knowledge Graphs (KGs), satisfying the requirements of ontological reasoning: full recursion, powerful existential quantification, expression of inductive definitions. Vadalog is a Knowledge Representation and Reasoning (KRR) language based on Warded Datalog+/-, a logical core language of existential rules, with a good balance between computational complexity and expressive power. Handling uncertainty is essential for reasoning with KGs. Yet Vadalog and Warded Datalog+/- are not covered by the existing probabilistic logic programming and statistical relational learning approaches for several reasons, including insufficient support for recursion with existential quantification, and the impossibility to express inductive definitions. In this work, we introduce Soft Vadalog, a probabilistic extension to Vadalog, satisfying these desiderata. A Soft Vadalog program induces what we call a Probabilistic Knowledge Graph (PKG), which consists of a probability distribution on a network of chase instances, structures obtained by grounding the rules over a database using the chase procedure. We exploit PKGs for probabilistic marginal inference. We discuss the theory and present MCMC-chase, a Monte Carlo method to use Soft Vadalog in practice. We apply our framework to solve data management and industrial problems, and experimentally evaluate it in the Vadalog system. Under consideration in Theory and Practice of Logic Programming (TPLP).