论文标题

结构方程模型的单连接规则

One-connection rule for structural equation models

论文作者

Adhikari, Bibhas, Gross, Elizabeth, Härkönen, Marc, Tsigaridas, Elias

论文摘要

线性结构方程模型是由混合图编码的多元统计模型。特别是,用于固定混合图$ g =(v,d,b)属于线性结构方程模型的分布的一组协方差矩阵是由有理函数的参数化的,每个顶点的参数和$ g $中的每个顶点的参数。这种合理的参数化自然允许从代数和组合的角度研究这些模型。的确,这种观点导致了文献中的一系列结果,主要集中于与可识别性和确定协方差之间的关系(即在高斯消失的理想中找到多项式)之间的关系。到目前为止,当$ d $(混合图$ g $的指示部分)是无环时,这些结果中的很大一部分集中在案例上。这是由于以下事实:在无环的情况下,参数化变为多项式,并且描述了协方差矩阵的条目,以有限的总和。我们超越了无环案例,并根据从$ d $通过一些小型操作从$ d $获得的图中的单连接表示了协方差矩阵条目的封闭式表达式。然后,此封闭式表达式允许我们证明,如果$ g $很简单,则参数化映射通常是有限的。最后,具有协方差矩阵的封闭形式表达式可以开发一种算法,用于系统地探索高斯消失的理想中可能的多项式。

Linear structural equation models are multivariate statistical models encoded by mixed graphs. In particular, the set of covariance matrices for distributions belonging to a linear structural equation model for a fixed mixed graph $G=(V, D,B)$ is parameterized by a rational function with parameters for each vertex and edge in $G$. This rational parametrization naturally allows for the study of these models from an algebraic and combinatorial point of view. Indeed, this point of view has led to a collection of results in the literature, mainly focusing on questions related to identifiability and determining relationships between covariances (i.e., finding polynomials in the Gaussian vanishing ideal). So far, a large proportion of these results has focused on the case when $D$, the directed part of the mixed graph $G$, is acyclic. This is due to the fact that in the acyclic case, the parametrization becomes polynomial and there is a description of the entries of the covariance matrices in terms of a finite sum. We move beyond the acyclic case and give a closed form expression for the entries of the covariance matrices in terms of the one-connections in a graph obtained from $D$ through some small operations. This closed form expression then allows us to show that if $G$ is simple, then the parametrization map is generically finite-to-one. Finally, having a closed form expression for the covariance matrices allows for the development of an algorithm for systematically exploring possible polynomials in the Gaussian vanishing ideal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源