论文标题

语义细分的轮廓感知的等电位学习

Contour-Aware Equipotential Learning for Semantic Segmentation

论文作者

Yin, Xu, Min, Dongbo, Huo, Yuchi, Yoon, Sung-Eui

论文摘要

随着对行业高质量语义细分的需求不断提高,艰难的语义界限对现有解决方案构成了重大威胁。受到现实生活经验的启发,即结合多样化的观察结果有助于更高的视觉识别信心,我们提出了等电位学习(EPL)方法。这个新颖的模块将预测的/基真实语义标签转移到一个自定义的潜在领域,以学习和推断沿自定义方向的决策边界。向电域的转换是通过轻巧的各向异性卷积实现的,而不会产生任何参数开销。此外,设计的两个损失函数,分别损失和等电位线损失实现各向异性场回归和类别级别的轮廓学习,从而增强了间/级内边界领域的预测一致性。更重要的是,EPL对网络体系结构不可知,因此可以将其插入大多数现有的分割模型中。本文是通过现场回归和轮廓学习解决边界细分问题的首次尝试。 Pascal VOC 2012和CityScapes的有意义的性能改进表明,在识别语义边界区域时,提出的EPL模块可以使现成的完全卷积网络模型受益。此外,密集的比较和分析表明,EPL可以区分语义相似和不规则形状的类别。

With increasing demands for high-quality semantic segmentation in the industry, hard-distinguishing semantic boundaries have posed a significant threat to existing solutions. Inspired by real-life experience, i.e., combining varied observations contributes to higher visual recognition confidence, we present the equipotential learning (EPL) method. This novel module transfers the predicted/ground-truth semantic labels to a self-defined potential domain to learn and infer decision boundaries along customized directions. The conversion to the potential domain is implemented via a lightweight differentiable anisotropic convolution without incurring any parameter overhead. Besides, the designed two loss functions, the point loss and the equipotential line loss implement anisotropic field regression and category-level contour learning, respectively, enhancing prediction consistencies in the inter/intra-class boundary areas. More importantly, EPL is agnostic to network architectures, and thus it can be plugged into most existing segmentation models. This paper is the first attempt to address the boundary segmentation problem with field regression and contour learning. Meaningful performance improvements on Pascal Voc 2012 and Cityscapes demonstrate that the proposed EPL module can benefit the off-the-shelf fully convolutional network models when recognizing semantic boundary areas. Besides, intensive comparisons and analysis show the favorable merits of EPL for distinguishing semantically-similar and irregular-shaped categories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源