论文标题
未配对多个不相交路径的最低半度条件覆盖了挖掘
A minimum semi-degree condition for unpaired many-to-many disjoint path covers in digraphs
论文作者
论文摘要
对于digraph $ d $,令$δ^{0}(d)= \ min \ {δ^{+}(d),δ^{ - }(d)\} $是$ d $的最小半学位。一组$ k $ vertex-disexhight路径,$ \ {p_ {1},\ dots,p_ {k} \} $,连接一个分离源集$ s = \ s = \ s = \ {1},\ dot t_ {k} \} $称为$ d $的不成熟的多与Many $ k $ -disjoint指示路径封面($ k $ -ddpc,for Short for Short),如果每个$ p_ {j} $ joins $ s_ {j} $ s_ {j} $和$ t_ {(j)$ t_(j)} $ for某些$ cout $ n $ n $ not $ not $ not $ not $ c \ \ c。 $ \ bigCup^{k} _ {j = 1} v(p_ {j})= v(d)$。 在本文中,我们给出了以下结果的新证据,表明每个digraph $ d $都带有$δ^{0}(d)\ geq \ lceil(n+k) / 2 \ rceil $都有一个不成熟的$ k $ -k $ -dddpc,以加入$ s $ s $ s $ s $ s $ t $ t $ t $ s_ {k} \} $和$ t = \ {t_ {1},\ dots,t_ {k} \} $。此外,我们证明,当$ n \ geq 3k $时,最低限制的界限是最小半学位的界限。
For a digraph $D$, let $δ^{0}(D) = \min \{δ^{+}(D), δ^{-}(D)\}$ be the minimum semi-degree of $D$. A set of $k$ vertex-disjoint paths, $\{P_{1}, \dots, P_{k}\}$, joining a disjoint source set $S = \{s_{1}, \dots, s_{k}\}$ and sink set $T = \{t_{1}, \dots, t_{k}\}$ is called an unpaired many-to-many $k$-disjoint directed path cover ($k$-DDPC for short) of $D$, if each $P_{j}$ joins $s_{j}$ and $t_{σ(j)}$ for some permutation $σ$ on $\{1, \dots , k\}$ and $\bigcup^{k}_{j=1} V(P_{j}) = V(D)$. In this paper, we give a new proof for the following result that every digraph $D$ with $δ^{0}(D) \geq \lceil (n+k) / 2 \rceil$ has an unpaired many-to-many $k$-DDPC joining any disjoint source set $S$ and sink set $T$, where $S = \{s_{1}, \dots, s_{k}\}$ and $T = \{t_{1}, \dots, t_{k}\}$. Moreover, we show that the bound on the minimum semi-degree is best possible when $n \geq 3k$.