论文标题

在Cryo-Em地图中的自动模型构建的图形神经网络方法

A Graph Neural Network Approach to Automated Model Building in Cryo-EM Maps

论文作者

Jamali, Kiarash, Kimanius, Dari, Scheres, Sjors H. W.

论文摘要

电子冷冻微观(Cryo-EM)产生了包括蛋白质在内的生物大分子的静电潜力的三维(3D)图。除了对成像分子的知识外,冷冻EM地图还允许从头原子建模,这通常是通过艰苦的手动过程来完成的。从机器学习应用的最新进展中汲取灵感到蛋白质结构预测,我们提出了一种图形神经网络(GNN)方法,用于在低温EM地图中自动化蛋白质的自动模型。 GNN作用于图表,该图分配给了代表蛋白质链的单个氨基酸和边缘。 GNN结合了来自基于体素的低温EM数据,氨基酸序列数据以及有关蛋白质几何形状的先验知识,GNN优化了蛋白质链的几何形状,并为其每个淋巴结分类了氨基酸。对28例测试用例的应用表明,我们的方法的表现优于最先进的方法,并近似于制定分辨率大于3.5Å的冷冻地图的手动构建。

Electron cryo-microscopy (cryo-EM) produces three-dimensional (3D) maps of the electrostatic potential of biological macromolecules, including proteins. Along with knowledge about the imaged molecules, cryo-EM maps allow de novo atomic modelling, which is typically done through a laborious manual process. Taking inspiration from recent advances in machine learning applications to protein structure prediction, we propose a graph neural network (GNN) approach for automated model building of proteins in cryo-EM maps. The GNN acts on a graph with nodes assigned to individual amino acids and edges representing the protein chain. Combining information from the voxel-based cryo-EM data, the amino acid sequence data and prior knowledge about protein geometries, the GNN refines the geometry of the protein chain and classifies the amino acids for each of its nodes. Application to 28 test cases shows that our approach outperforms the state-of-the-art and approximates manual building for cryo-EM maps with resolutions better than 3.5 Å.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源