论文标题

带有边界分形结构的$ ads/cft $的重建楔块

Reconstruction wedges in $AdS/CFT$ with boundary fractallike structures

论文作者

Bao, Ning, Naskar, Joydeep

论文摘要

在这项工作中,我们显示了Uberholography及其相关的量子误差的鲁棒性,以校正代码,以在散装中存在高度熵混合状态的情况下,以纠缠楔形的分解。我们表明,对于在$ ads_3/cft_2 $中的边界中类似cantor-set的擦除,代码距离独立于$ M \ rightarrow \ rightarrow \ infty $ limit中的混合状态熵。我们还表明,对于Sierpinski三角形的边界区域,具有$ ads_4/cft_3 $中的分形边界擦除,在大型$ M $ ymemime中的散装中存在高度熵的混合状态,可以进行批量重建。

In this work, we show the robustness of uberholography and its associated quantum error correcting code against the breakdown of entanglement wedge in the presence of highly entropic mixed states in the bulk. We show that for Cantor-set-like erasure in the boundary in $AdS_3/CFT_2$, the code distance is independent of the mixed-state entropy in the bulk in the $m\rightarrow\infty$ limit. We also show that for a Sierpinski triangle shaped boundary subregion with fractal boundary erasures in $AdS_4/CFT_3$, bulk reconstruction is possible in the presence of highly entropic mixed states in the bulk in the large $m$ regime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源