论文标题

回忆:对象分类的无彩排持续学习

RECALL: Rehearsal-free Continual Learning for Object Classification

论文作者

Knauer, Markus, Denninger, Maximilian, Triebel, Rudolph

论文摘要

卷积神经网络在分类方面表现出了显着的结果,但在即时学习新事物方面挣扎。我们提出了一种新颖的彩排方法,其中深层神经网络正在不断学习新的看不见的对象类别,而无需保存任何先前序列的数据。我们的方法称为召回,因为网络通过在培训新类别之前计算旧类别的逻辑来回忆类别。然后在培训期间使用这些,以避免更改旧类别。对于每个新序列,都会添加一个新的头部以适应新类别。为了减轻遗忘,我们提出了一种正规化策略,在该策略中,我们将分类用回归替换。此外,对于已知类别,我们提出了一个玛哈拉氏症损失,其中包括差异,以说明已知类别和未知类别之间的密度变化。最后,我们提供了一个用于持续学习的新颖数据集,尤其是适合于移动机器人(Hows-CL-25)上的对象识别的数据集,其中包括25个家庭对象类别的150,795个合成图像。我们的方法回忆起优于Core50和ICIFAR-100上的当前艺术状态,并且在HOWS-CL-25上取得了最佳性能。

Convolutional neural networks show remarkable results in classification but struggle with learning new things on the fly. We present a novel rehearsal-free approach, where a deep neural network is continually learning new unseen object categories without saving any data of prior sequences. Our approach is called RECALL, as the network recalls categories by calculating logits for old categories before training new ones. These are then used during training to avoid changing the old categories. For each new sequence, a new head is added to accommodate the new categories. To mitigate forgetting, we present a regularization strategy where we replace the classification with a regression. Moreover, for the known categories, we propose a Mahalanobis loss that includes the variances to account for the changing densities between known and unknown categories. Finally, we present a novel dataset for continual learning, especially suited for object recognition on a mobile robot (HOWS-CL-25), including 150,795 synthetic images of 25 household object categories. Our approach RECALL outperforms the current state of the art on CORe50 and iCIFAR-100 and reaches the best performance on HOWS-CL-25.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源