论文标题

通过失去原始气氛,修改地球样系外行星的放射性热预算

Modification of the radioactive heat budget of Earth-like exoplanets by the loss of primordial atmospheres

论文作者

Erkaev, N., Scherf, M., Herbort, O., Lammer, H., Odert, P., Kubyshkina, D., Leitzinger, M., Woitke, P., O'Neill, C.

论文摘要

陆地行星内部产生放射性热的同位素的最初丰度是其热进化的重要驱动因素,以及相关的构造,并且可能发展到类似地球的栖息地。中度挥发性元件k可以从岩浆海洋中量到h $ _2 $ _2 $区的原始元素的原始气氛,而假定质量在0.55-1.0 $ m _ {\ rm Earth} $之间,当时气盘蒸发。我们估计了这种量大的气味,并使这些行星通过耗尽和无耗电的材料的影响而增长,这些材料类似于相同的$^{40} $ k丰富的平均碳质软管,直到生长的Protoplanets达到1.0 $ M _ {\ rm Earth} $。我们检查了不同的大气组成,并根据压力和温度的函数,使用GGCHEM代码来计算吉布斯自由能最小化K的比例。我们发现,对于h $ _2 $的开发物,对于$ \ ge $ 2500 K的岩浆海面温度,没有K冷凝物是热稳定的,因此超过$^{40} $ K可以在很大程度上填充气氛。但是,由于岩浆海洋的转换时间以及$^{40} $ k的有限扩散,从岩浆海洋中的整个$^{40} $ k中,只有一小部分可以逃入太空。原始气氛的逃逸速率和拖曳的$^{40} $ K将用于具有多种多物质流体动力上层大气进化模型的不同出色的EUV活性。我们的结果导致在完全生长的行星中产生的热量不同,这可能会导致陆地行星的不同热和构造历史及其宜居性条件。

The initial abundance of radioactive heat producing isotopes in the interior of a terrestrial planet are important drivers of its thermal evolution and the related tectonics and possible evolution to an Earth-like habitat. The moderately volatile element K can be outgassed from a magma ocean into H$_2$-dominated primordial atmospheres of protoplanets with assumed masses between 0.55-1.0$ M_{\rm Earth}$ at the time when the gas disk evaporated. We estimate this outgassing and let these planets grow through impacts of depleted and non-depleted material that resembles the same $^{40}$K abundance of average carbonaceous chondrites until the growing protoplanets reach 1.0 $M_{\rm Earth}$. We examine different atmospheric compositions and, as a function of pressure and temperature, calculate the proportion of K by Gibbs Free Energy minimisation using the GGChem code. We find that for H$_2$-envelopes and for magma ocean surface temperatures that are $\ge$ 2500 K, no K condensates are thermally stable, so that outgassed $^{40}$K can populate the atmosphere to a great extent. However, due to magma ocean turn-over time and the limited diffusion of $^{40}$K into the upper atmosphere, from the entire $^{40}$K in the magma ocean only a fraction may be available for escaping into space. The escape rates of the primordial atmospheres and the dragged $^{40}$K are further simulated for different stellar EUV-activities with a multispecies hydrodynamic upper atmosphere evolution model. Our results lead to different abundances of heat producing elements within the fully grown planets which may give rise to different thermal and tectonic histories of terrestrial planets and their habitability conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源