论文标题
在旋转总和的公式中,艾森斯坦 - 克罗内克系列中的较高属riemann表面
On a formula of spin sums, Eisenstein-Kronecker series in higher genus Riemann surfaces
论文作者
论文摘要
我们讨论了使用环状约束的费米相关函数的简单产物的分解公式及其在超级字符串振幅的自旋总和中的应用。基于本文注意到或得出的一些事实,我们提出了该分解公式形式的候选者,以针对包括两种属的某些较高属案例。尽管由于未解决的数学困难,我们必须使用几种猜想和假设,但文本中描述的方法可能是在较高属案例中获得分解公式的有效方法。特别是,对于那些情况,我们提出了一种具体方法,将任意数量的费米相关函数的乘积与非单数甚至旋转结构汇总在一起,并在超级字符串振幅中具有循环约束。在上面的考虑过程中,我们还提出了对较高属案例的Eisenstein-Kronecker系列的明确概括。
We discuss a decomposition formula of simple products of fermion correlation functions with cyclic constrains and its applications to spin sums of super string amplitudes. Based on some facts which are noted or derived in this paper, we propose a candidate of the form of this decomposition formula for some of higher genus cases which includes genus two case. Although we had to use several conjectures and assumptions due to unsolved mathematical difficulties, the method described in the text may be an efficient way to obtain the decomposition formula in higher genus cases. In particular, for those cases, we propose a concrete method to sum over non singular even spin structures for the product of arbitrary number of the fermion correlation functions with cyclic constraints in super string amplitudes. We also propose an explicit generalization of Eisenstein-Kronecker series to the higher genus cases in the process of considerations above.