论文标题
在平衡的随机环境中随机步行的热核边界的随机整合性
Stochastic integrability of heat-kernel bounds for random walks in a balanced random environment
论文作者
论文摘要
我们考虑在平衡的I.D.中随机步行。 $ d \ ge2 $的$ z^d $中的随机环境和相应的离散非差异差异操作员。我们首先获得热核边界的指数积分。然后,我们证明了热核以$ d \ ge3 $生成的半群的最佳扩散衰减。结果,我们针对从粒子观察的环境推导了功能性中心极限定理。
We consider random walks in a balanced i.i.d. random environment in $Z^d$ for $d\ge2$ and the corresponding discrete non-divergence form difference operators. We first obtain an exponential integrability of the heat kernel bounds. We then prove the optimal diffusive decay of the semigroup generated by the heat kernel for $d\ge3$. As a consequence, we deduce a functional central limit theorem for the environment viewed from the particle.