论文标题

通过广义线性等级统计数据精确有效的多元两样本测试

Exact and efficient multivariate two-sample tests through generalized linear rank statistics

论文作者

Erdmann-Pham, Dan D.

论文摘要

所谓的线性秩统计量为单变量随机变量的情况下(即使在有限样本中)(即使在有限样本中)(即使在有限样本中)则提供了一种手段。它们的灵活性源于可以适应任何给定(简单)替代假设的权重的选择,以便在正确规范该替代方案的情况下实现效率,而其非参数性质也可以保证即使在不明显的情况下,也可以很好地校准$ P $ VALUES。通过将连接到(广义)最大似然估计,并在多个维度的最新工作中扩展,我们将线性等级统计范围扩展到多元随机变量和复合替代方案。这样做会产生非参数的多元两样本测试,这些测试反映了似然比测试的效率,同时对模型错误指定和可计算可行的效率保持稳健。我们证明了经典WALD的非参数版本和评分测试,并促进了渐近状态下的假设检验,并将这些广义的线性秩统计量与线性间距统计量相关联,可在小型到中度样本设置中实现精确的$ p $ - 值计算。此外,通过类似比率的视角查看等级统计数据提供了超出完全有效的两样本测试的应用,我们证明了三个:在存在滋扰替代方案的情况下进行测试,同时检测位置和规模变化以及$ k $ - $ -SSample测试。

So-called linear rank statistics provide a means for distribution-free (even in finite samples), yet highly flexible, two-sample testing in the setting of univariate random variables. Their flexibility derives from a choice of weights that can be adapted to any given (simple) alternative hypothesis to achieve efficiency in case of correct specification of said alternative, while their non-parametric nature guarantees well-calibrated $p$-values even under misspecification. By drawing connections to (generalized) maximum likelihood estimation, and expanding on recent work on ranks in multiple dimensions, we extend linear rank statistics both to multivariate random variables and composite alternatives. Doing so yields non-parametric, multivariate two-sample tests that mirror efficiency properties of likelihood ratio tests, while remaining robust against model misspecification and computationally tractable. We prove non-parametric versions of the classical Wald and score tests facilitating hypothesis testing in the asymptotic regime, and relate these generalized linear rank statistics to linear spacing statistics enabling exact $p$-value computations in the small to moderate sample setting. Moreover, viewing rank statistics through the lens of likelihood ratios affords applications beyond fully efficient two-sample testing, of which we demonstrate three: testing in the presence of nuisance alternatives, simultaneous detection of location and scale shifts, and $K$-sample testing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源