论文标题

2D相对比心血管磁共振成像的自动质量控制分析

Automated Quality Controlled Analysis of 2D Phase Contrast Cardiovascular Magnetic Resonance Imaging

论文作者

Chan, Emily, O'Hanlon, Ciaran, Marquez, Carlota Asegurado, Petalcorin, Marwenie, Mariscal-Harana, Jorge, Gu, Haotian, Kim, Raymond J., Judd, Robert M., Chowienczyk, Phil, Schnabel, Julia A., Razavi, Reza, King, Andrew P., Ruijsink, Bram, Puyol-Antón, Esther

论文摘要

使用相对比心脏磁共振成像(PC-CMR)进行的流量分析可以量化用于评估心血管功能的重要参数。该分析的重要部分是鉴定正确的CMR视图和质量控制(QC),以检测可能影响流量量化的伪像。我们提出了一个新型的基于深度学习的框架,用于对完整CMR扫描的流量进行完全自动化的分析,该框架首先使用两个顺序卷积神经网络进行了这些视图选择和QC步骤,然后进行自动主动脉和肺动脉分段,以实现关键流参数的量化。用于观察分类和QC的精度值为0.958和0.914。对于细分,骰子分数为$> $ 0.969,而平淡的altman情节表示手动和自动峰流量值之间的一致性很高。此外,我们在外部验证数据集上测试了管道,结果表明管道的鲁棒性。这项工作是使用由986例病例组成的多生临床数据进行的,表明在临床环境中使用该管道的潜力。

Flow analysis carried out using phase contrast cardiac magnetic resonance imaging (PC-CMR) enables the quantification of important parameters that are used in the assessment of cardiovascular function. An essential part of this analysis is the identification of the correct CMR views and quality control (QC) to detect artefacts that could affect the flow quantification. We propose a novel deep learning based framework for the fully-automated analysis of flow from full CMR scans that first carries out these view selection and QC steps using two sequential convolutional neural networks, followed by automatic aorta and pulmonary artery segmentation to enable the quantification of key flow parameters. Accuracy values of 0.958 and 0.914 were obtained for view classification and QC, respectively. For segmentation, Dice scores were $>$0.969 and the Bland-Altman plots indicated excellent agreement between manual and automatic peak flow values. In addition, we tested our pipeline on an external validation data set, with results indicating good robustness of the pipeline. This work was carried out using multivendor clinical data consisting of 986 cases, indicating the potential for the use of this pipeline in a clinical setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源