论文标题
拍摄方法中的伴随系统解决边界价值问题
Adjoint System in the Shooting Method to Solve Boundary Value Problems
论文作者
论文摘要
拍摄方法用于通过分离和明确的约束解决边界价值问题。为了获得未知初始值的近似值,可以根据给定差分系统附加的伴随差分系统考虑参数。最后,牛顿 - 坎托维奇迭代恢复了。
The shooting method is used to solve a boundary value problem with separated and explicit constraints. To obtain approximations of an unknown initial values there are considered arguments based on the adjoint differential system attached to the given differential system. Finally the Newton - Kantorovich iterations are regained.