论文标题

Cyclean网络用于钣金焊接图形翻译

Cyclegan Network for Sheet Metal Welding Drawing Translation

论文作者

Song, Zhiwei, Yao, Hui, Tian, Dan, Zhan, Gaohui

论文摘要

在智能制造中,机器翻译工程图纸的质量将直接影响其制造准确性。目前,大多数工作都是手动翻译的,大大降低了生产效率。本文提出了一种基于环状生成对抗网络(Cyclegan)的焊接结构工程图的自动翻译方法。不成对转移学习的Cyclegan网络模型用于学习真实焊接工程图的功能映射,以实现工程图的自动翻译。 U-NET和PatchGAN分别是生成器和鉴别器的主要网络。基于删除身份映射函数,提出了一个高维稀疏网络,以取代传统的密集网络以改善噪声稳健性。增加残留块隐藏层以增加生成图的分辨率。改进的和微调的网络模型经过实验验证,计算实际数据和生成数据之间的差距。它符合焊接工程精度标准,并解决了焊接制造过程中低绘图识别效率的主要问题。结果显示。在我们的模型训练之后,焊接工程图的PSNR,SSIM和MSE分别达到44.89%,99.58%和2.11,它们在训练速度和准确性方面都优于传统网络。

In intelligent manufacturing, the quality of machine translation engineering drawings will directly affect its manufacturing accuracy. Currently, most of the work is manually translated, greatly reducing production efficiency. This paper proposes an automatic translation method for welded structural engineering drawings based on Cyclic Generative Adversarial Networks (CycleGAN). The CycleGAN network model of unpaired transfer learning is used to learn the feature mapping of real welding engineering drawings to realize automatic translation of engineering drawings. U-Net and PatchGAN are the main network for the generator and discriminator, respectively. Based on removing the identity mapping function, a high-dimensional sparse network is proposed to replace the traditional dense network for the Cyclegan generator to improve noise robustness. Increase the residual block hidden layer to increase the resolution of the generated graph. The improved and fine-tuned network models are experimentally validated, computing the gap between real and generated data. It meets the welding engineering precision standard and solves the main problem of low drawing recognition efficiency in the welding manufacturing process. The results show. After training with our model, the PSNR, SSIM and MSE of welding engineering drawings reach about 44.89%, 99.58% and 2.11, respectively, which are superior to traditional networks in both training speed and accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源