论文标题
Prestellar Core L1544的化学和动力学
Chemistry and dynamics of the prestellar core L1544
论文作者
论文摘要
我们旨在量化化学对Prestellar Core L1544中插入速度的影响。先前的观察性研究发现了几个分子旋转过渡的双峰线轮廓的证据,这些旋转过渡无法使用目前可用于源物理结构的模型来解释,而无需临时计算速度。我们使用具有非常大的化学网络的最先进的化学网络,与分子线冷却的广泛描述相结合,通过辐射转移模拟确定的,与这些模型相比,确定的较高的模型(是否可以启用了这些模型),我们使用了一个非常大的化学网络,并确定这些模型是否可以启用这些模型,则使用具有很大的化学网络的广泛描述,与这些模型相比,该模型确定了这些模型(是否可以启用ver ver ver),我们使用了一个非常大的化学网络,使用了一个非常大的化学网络,使用了一个非常大的化学网络,使用了一个非常大的化学网络,使用了一个非常大的化学网络,使用了一个非常大的化学网络,则使用了一个非常大的化学网络,使用了一个非常大的化学网络,使用了一个非常大的化学网络(在质量和外部半径上)进行了一维流体动力学模拟。在运行了一系列模拟的模拟后,我们发现插入速度几乎与化学网络的尺寸或线冷却方法无关。我们得出的结论是,化学演化对中的速度没有很大的影响,并且观察值所暗示的较高的插入速度可能是核心比现在想象的要动态进化的结果,或者是模拟核心中核心的平均密度太低。但是,化学确实会对核心的寿命产生很大的影响,核心的寿命在整个模拟中的变化约为两倍,并且在简化化学网络时会增长更长的时间。因此,尽管该模型受到多种不确定性来源的约束,但目前的结果清楚地表明,使用小型化学网络会导致核心寿命的错误估计,这自然是在前爆发阶段发展化学复杂性的关键参数。
We aim to quantify the effect of chemistry on the infall velocity in the prestellar core L1544. Previous observational studies have found evidence for double-peaked line profiles for the rotational transitions of several molecules, which cannot be accounted for with the models presently available for the physical structure of the source, without ad hoc up-scaling of the infall velocity. We ran one-dimensional hydrodynamical simulations of the collapse of a core with L1544-like properties (in terms of mass and outer radius), using a state-of-the-art chemical model with a very large chemical network combined with an extensive description of molecular line cooling, determined via radiative transfer simulations, with the aim of determining whether these expansions of the simulation setup (as compared to previous models) can lead to a higher infall velocity. After running a series of simulations where the simulation was sequentially simplified, we found that the infall velocity is almost independent of the size of the chemical network or the approach to line cooling. We conclude that chemical evolution does not have a large impact on the infall velocity, and that the higher infall velocities that are implied by observations may be the result of the core being more dynamically evolved than what is now thought, or alternatively the average density in the simulated core is too low. However, chemistry does have a large influence on the lifetime of the core, which varies by about a factor of two across the simulations and grows longer when the chemical network is simplified. Therefore, although the model is subject to several sources of uncertainties, the present results clearly indicate that the use of a small chemical network leads to an incorrect estimate of the core lifetime, which is naturally a critical parameter for the development of chemical complexity in the precollapse phase.