论文标题
基于视觉的作物行导航在可耕地的不同田间条件下
Vision based Crop Row Navigation under Varying Field Conditions in Arable Fields
论文作者
论文摘要
在现实世界中耕地中存在的不同田间条件通常会挑战准确的作物行检测。传统的基于颜色的细分无法满足所有这些变化。在农业环境中缺乏全面的数据集限制了研究人员开发强大的分割模型来检测作物行。我们提出了一个用于作物行检测的数据集,其中有11种与甜菜和玉米作物的田间变化。我们还提出了一种新型的作物行检测算法,用于在作物行场中进行视觉致暗行。我们的算法可以在不同的田间条件下检测作物行,例如弯曲的农作物行,杂草,不连续性,生长阶段,具型型,阴影和光水平。我们的方法仅使用来自沙哑的机器人上正式摄像头的RGB图像来预测作物行。我们的方法表现优于经典的基于颜色的作物行检测基线。在农作物行检测算法的最具挑战性的田间条件下,杂草之间存在密集的杂草,而作物行中的不连续性是最具挑战性的田间条件。我们的方法可以检测到作物行的末端,并在到达农作物行的末端时将机器人导航到岬角区域。
Accurate crop row detection is often challenged by the varying field conditions present in real-world arable fields. Traditional colour based segmentation is unable to cater for all such variations. The lack of comprehensive datasets in agricultural environments limits the researchers from developing robust segmentation models to detect crop rows. We present a dataset for crop row detection with 11 field variations from Sugar Beet and Maize crops. We also present a novel crop row detection algorithm for visual servoing in crop row fields. Our algorithm can detect crop rows against varying field conditions such as curved crop rows, weed presence, discontinuities, growth stages, tramlines, shadows and light levels. Our method only uses RGB images from a front-mounted camera on a Husky robot to predict crop rows. Our method outperformed the classic colour based crop row detection baseline. Dense weed presence within inter-row space and discontinuities in crop rows were the most challenging field conditions for our crop row detection algorithm. Our method can detect the end of the crop row and navigate the robot towards the headland area when it reaches the end of the crop row.