论文标题
部分可观测时空混沌系统的无模型预测
Segment Linking: A Highly Parallelizable Track Reconstruction Algorithm for HL-LHC
论文作者
论文摘要
大型强子对撞机(HL-LHC)的高光度升级将产生粒子碰撞,并具有多达200个同时质子 - 蛋白质相互作用。这些前所未有的条件将为带电粒子轨道重建的组合复杂性创造一个组合的复杂性,该重建要求使用常规CPU超过预期的计算预算。由此激励并考虑到尖端高性能计算中心中异质计算的普遍性,我们提出了一种有效,快速且高度可行的自下而上方法,以跟踪HL-LHC的重建,以及在GPUS上的相关实现,在第2阶段2 CMS外部跟踪器的上下文中。我们的算法称为段链接(或线段跟踪),利用局部轨道存根创建,将单个存根组合在一起,形成逐渐形成较高级别的对象,这些对象受运动和几何需求与真正的物理轨道兼容。该算法的局部性质使其非常适合单个指令下的并行化(多个数据范式),因为可以同时构建数百个对象。该算法的计算和物理性能已在NVIDIA TESLA V100 GPU上进行了测试,已经产生了与现有CMS跟踪算法的最新的多CPU版本相同的效率和时机测量。
The High Luminosity upgrade of the Large Hadron Collider (HL-LHC) will produce particle collisions with up to 200 simultaneous proton-proton interactions. These unprecedented conditions will create a combinatorial complexity for charged-particle track reconstruction that demands a computational cost that is expected to surpass the projected computing budget using conventional CPUs. Motivated by this and taking into account the prevalence of heterogeneous computing in cutting-edge High Performance Computing centers, we propose an efficient, fast and highly parallelizable bottom-up approach to track reconstruction for the HL-LHC, along with an associated implementation on GPUs, in the context of the Phase 2 CMS outer tracker. Our algorithm, called Segment Linking (or Line Segment Tracking), takes advantage of localized track stub creation, combining individual stubs to progressively form higher level objects that are subject to kinematical and geometrical requirements compatible with genuine physics tracks. The local nature of the algorithm makes it ideal for parallelization under the Single Instruction, Multiple Data paradigm, as hundreds of objects can be built simultaneously. The computing and physics performance of the algorithm has been tested on an NVIDIA Tesla V100 GPU, already yielding efficiency and timing measurements that are on par with the latest, multi-CPU versions of existing CMS tracking algorithms.