论文标题
使用LSST晚期光度法来约束IBC类型的超新星及其祖细胞
Using LSST late-time photometry to constrain Type Ibc supernovae and their progenitors
论文作者
论文摘要
Vera C. Rubin天文台对空间和时间(LSST)的寿命范围内将监测数百万的超新星(SNE)从爆炸到遗忘,从而在其延迟演变上产生了前所未有的Ugrizy光度计数据集。在这里,我们表明,IBC SNE型的光度演变可用于限制其喷射的大量特性,而无需昂贵的光谱观测。使用辐射式转移模拟来爆炸不同初始质量的HE-Star祖细胞,我们表明G频段过滤器主要遵循FEII发射的强度,R-band [oi] 6300-6364a和[nii]和[nii] 6548-6583a,6548-6583A因此提供了有关核合成产量的信息。缺少有关较弱线的信息,例如,可以使用这些信息来限制结块。但是,通过与物理一致的3D爆炸模型的紧密联系以及司法选择较小的一组光谱观察结果,可以通过更紧密的联系来改善辐射转移模拟的物理现实主义来解决这种缺陷。 SN辐射固有的退化性将影响光度测量的解释,但类似地损害了Nebular-phase光谱的线通量。重要的是,随着射流从100到450d的发展,我们的``家族''''家族'遵循了颜色尺寸图的独特轨迹,从而使一个人可以解散不同的祖细胞或爆炸。该光度法提供了一种有前途的方法来研究SNE IBC的统计样本,并与他们面对不断改善祖细胞和爆炸模型,以捕获与情节材料的延迟相互作用或确定目前未知的事件的开始。
Over its lifespan, the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) will monitor millions of supernovae (SNe) from explosion to oblivion, yielding an unprecedented ugrizy photometric dataset on their late-time evolution. Here, we show that the photometric evolution of Type Ibc SNe can be used to constrain numerous properties of their ejecta, without the need for expensive spectroscopic observations. Using radiative-transfer simulations for explosions of He-star progenitors of different initial masses, we show that the g-band filter follows primarily the strength of the FeII emission, the r-band [OI]6300-6364A and [NII]6548-6583A, the i-band [CaII]7291,7323A, and the z-band the CaII NIR triplet, and hence provides information on nucleosynthetic yields. Information on weaker lines, which may be used, for example, to constrain clumping, is absent. However, this deficiency may eventually be cured by improving the physical realism of radiative-transfer simulations through a closer connection to physically consistent 3D explosion models, and by the judicial selection of a much smaller set of spectral observations. Degeneracies inherent to the SN radiation will affect the interpretation of photometric measures, but line fluxes from nebular-phase spectra are similarly compromised. Importantly, our ``family'' of Type Ibc SN models follows a distinct trajectory in color-color magnitude diagrams as the ejecta evolve from 100 to 450d, allowing one to disentangle different progenitors or explosions. This photometric procedure provides a promising approach to study statistical samples of SNe Ibc and to confront them to ever improving progenitor and explosion models, to capture the onset of late-time interaction with circumstellar material, or to identify events currently unknown.