论文标题
部分可观测时空混沌系统的无模型预测
Relationship between two-particle topology and fractional Chern insulator
论文作者
论文摘要
在强相关的系统中,已广泛研究了称为分数Chern绝缘子(FCIS)的分数量子大厅(FQH)系统的晶格概括。尽管做了很多努力,但以前的研究并未揭示FCI搜索的所有指导原则。在本文中,我们研究了两个粒子问题中拓扑带结构与多体问题中的FCI接地状态之间的关系。我们首先提出了投影到给定紧密结合的哈密顿量最低带上的骨内相互作用的两粒子问题。我们引入了一个还原的哈密顿量,其特征值对应于两粒子结合状态的能量。通过使用降低的哈密顿量,我们定义了两粒子Chern数,并数值检查了由两粒子Chern数量预测的散装对应关系。然后,我们提出一个非平凡的两粒子Chern数量的主要带子大致表明存在骨气FCI接地状态在填充因子$ν= 1/2 $处。我们在几种具有Chern频段的紧密结合模型中研究了这种关系,并发现在大多数情况下,它在大多数情况下都持有良好的效果,尽管两波段模型是例外。尽管在先前的研究中,两粒子拓扑既不是FCI状态作为其他指标的必要条件,也不是足够的条件,但我们的数值结果表明,两粒子拓扑表的特征是与FQH系统相似的程度。
Lattice generalizations of fractional quantum Hall (FQH) systems, called fractional Chern insulators (FCIs), have been extensively investigated in strongly correlated systems. Despite many efforts, previous studies have not revealed all of the guiding principles for the FCI search. In this paper, we investigate a relationship between the topological band structure in the two-particle problem and the FCI ground states in the many-body problem. We first formulate the two-particle problem of a bosonic on-site interaction projected onto the lowest band of a given tight-binding Hamiltonian. We introduce a reduced Hamiltonian whose eigenvalues correspond to the two-particle bound-state energies. By using the reduced Hamiltonian, we define the two-particle Chern number and numerically check the bulk-boundary correspondence that is predicted by the two-particle Chern number. We then propose that a nontrivial two-particle Chern number of dominant bands roughly indicates the presence of bosonic FCI ground states at filling factor $ν=1/2$. We numerically investigate this relationship in several tight-binding models with Chern bands and find that it holds well in most of the cases, albeit two-band models being exceptions. Although the two-particle topology is neither a necessary nor a sufficient condition for the FCI state as other indicators in previous studies, our numerical results indicate that the two-particle topology characterizes the degree of similarity to the FQH systems.