论文标题
研究有机分子的基于机器学习的粗粒映射方案
Investigation of Machine Learning-based Coarse-Grained Mapping Schemes for Organic Molecules
论文作者
论文摘要
由于大分子系统中存在的各种时间尺度,其计算研究是必要的。粗粒(CG)允许在不同的系统分辨率之间建立联系,并为开发强大的多尺度模拟和分析提供了骨干。 CG映射过程通常是系统和应用特定的,它依赖于化学直觉。在这项工作中,我们探讨了基于变异自动编码器的机器学习策略的应用,以开发合适的映射方案,从原子体到分子的粗粒空间,并随着化学复杂性的增加而开发。对模型超级法对训练过程和最终输出的影响进行了广泛的评估,并通过定义不同的损失函数的定义进行了现有方法,并实现了确保输出物理一致性的选择标准。分析了输入特征选择和重建精度之间的关系,从而支持将旋转不变性引入系统。在映射和背景步骤中,该方法的优势和局限性都被突出显示并进行了严格讨论。
Due to the wide range of timescales that are present in macromolecular systems, hierarchical multiscale strategies are necessary for their computational study. Coarse-graining (CG) allows to establish a link between different system resolutions and provides the backbone for the development of robust multiscale simulations and analyses. The CG mapping process is typically system- and application-specific, and it relies on chemical intuition. In this work, we explored the application of a Machine Learning strategy, based on Variational Autoencoders, for the development of suitable mapping schemes from the atomistic to the coarse-grained space of molecules with increasing chemical complexity. An extensive evaluation of the effect of the model hyperparameters on the training process and on the final output was performed, and an existing method was extended with the definition of different loss functions and the implementation of a selection criterion that ensures physical consistency of the output. The relationship between the input feature choice and the reconstruction accuracy was analyzed, supporting the need to introduce rotational invariance into the system. Strengths and limitations of the approach, both in the mapping and in the backmapping steps, are highlighted and critically discussed.