论文标题
简约的集体感知和不完美的传感器
Minimalistic Collective Perception with Imperfect Sensors
论文作者
论文摘要
集体感知是群体机器人技术中的基本问题,在该机器人技术中,群体必须就环境的连贯代表达成共识。集体感知的一个重要变体将其视为最佳决策过程,在该过程中,群体必须从一组替代方案中确定最可能的代表。过去对这种变体的工作主要集中在表征不同算法如何在群体必须决定最频繁的环境特征的情况下如何导航速度-VS-Cracy Cracy折衷。至关重要的是,过去在最佳决策中的工作使机器人传感器是完美的(无噪声和故障),从而限制了这些算法的现实适用性。在本文中,我们从第一个原理中得出了一个最佳的,概率的框架,用于配备有缺陷的传感器的简约蜂群机器人。然后,我们在群体共同决定某个环境特征的频率的情况下验证了我们的方法。我们研究了有关几个感兴趣的参数的决策过程的速度和准确性。即使存在严重的感觉噪声,我们的方法也可以及时,准确地估计。
Collective perception is a foundational problem in swarm robotics, in which the swarm must reach consensus on a coherent representation of the environment. An important variant of collective perception casts it as a best-of-$n$ decision-making process, in which the swarm must identify the most likely representation out of a set of alternatives. Past work on this variant primarily focused on characterizing how different algorithms navigate the speed-vs-accuracy tradeoff in a scenario where the swarm must decide on the most frequent environmental feature. Crucially, past work on best-of-$n$ decision-making assumes the robot sensors to be perfect (noise- and fault-less), limiting the real-world applicability of these algorithms. In this paper, we derive from first principles an optimal, probabilistic framework for minimalistic swarm robots equipped with flawed sensors. Then, we validate our approach in a scenario where the swarm collectively decides the frequency of a certain environmental feature. We study the speed and accuracy of the decision-making process with respect to several parameters of interest. Our approach can provide timely and accurate frequency estimates even in presence of severe sensory noise.