论文标题

在广义的奥斯兰德 - 里列顿猜想上

On a generalized Auslander-Reiten conjecture

论文作者

Dey, Souvik, Kumashiro, Shinya, Sarkar, Parangama

论文摘要

众所周知,广义的Auslander-Reiten条件(GARC)和对称的Auslander条件(SAC)是等效的,(GARC)意味着Auslander-Reiten条件(ARC)。在本文中,我们将探索(SAC),以及$ r \ to s $的几个规范更改。首先,我们证明了(SAC)对于$ r $和$ r/xr $的等效性,其中$ x $是$ r $上的非嵌合式,以及(sac)和(SAC)和(SACC)的戒指的等效性,对于具有正等级的模块的对称的Auslander条件(SACC)是模块的对称的Auslander条件。后者的断言肯定回答了Celikbas和Takahashi提出的问题。 其次,对于戒指同态$ r \ to s $,我们证明,如果$ s $满足(sac)(sac)(resp。(arc)),则$ r $也可以满足(sac)(sac)(resp。(arc)),如果$ s $的平面尺寸超过$ r $是有限的。我们还证明,$ r $的(sac)意味着($ r $是gorenstein和$ s = r/q^\ ell $)的(sac),其中$ q $是由常规序列$ r $生成的,序列的长度至少为$ \ ell $。这是本文证明的关于Ulrich理想的更一般结果的结果。将这些结果应用于确定环和数值半群环,我们提供了满足的新类环(SAC)。还探讨了(SAC)与与有限扩展学位有关的不变性之间的关系。

It is well-known that the generalized Auslander-Reiten condition (GARC) and the symmetric Auslander condition (SAC) are equivalent, and (GARC) implies that the Auslander-Reiten condition (ARC). In this paper we explore (SAC) along with the several canonical change of rings $R \to S$. First, we prove the equivalence of (SAC) for $R$ and $R/xR$, where $x$ is a non-zerodivisor on $R$, and the equivalence of (SAC) and (SACC) for rings with positive depth, where (SACC) is the symmetric Auslander condition for modules with constant rank. The latter assertion affirmatively answers a question posed by Celikbas and Takahashi. Secondly, for a ring homomorphism $R \to S$, we prove that if $S$ satisfies (SAC) (resp. (ARC)), then $R$ also satisfies (SAC) (resp. (ARC)) if the flat dimension of $S$ over $R$ is finite. We also prove that (SAC) for $R$ implies that (SAC) for $S$ when $R$ is Gorenstein and $S=R/Q^\ell$, where $Q$ is generated by a regular sequence of $R$ and the length of the sequence is at least $\ell$. This is a consequence of more general results about Ulrich ideals proved in this paper. Applying these results to determinantal rings and numerical semigroup rings, we provide new classes of rings satisfying (SAC). A relation between (SAC) and an invariant related to the finitistic extension degree is also explored.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源