论文标题
探索注意力运动预测的注意力
Exploring Attention GAN for Vehicle Motion Prediction
论文作者
论文摘要
安全可靠的自主驾驶堆栈(AD)的设计是我们时代最具挑战性的任务之一。这些广告有望在具有完全自主权的高度动态环境中驱动,并且比人类更大的可靠性。从这个意义上讲,要高效,安全地浏览任意复杂的流量情景,广告必须具有预测周围参与者的未来轨迹的能力。当前的最新模型通常基于复发,图形和卷积网络,在车辆预测的背景下取得了明显的结果。在本文中,我们考虑了物理和社会环境来计算最合理的轨迹,探讨了在运动预测的生成模型中注意力的影响。我们首先使用LSTM网络对过去的轨迹进行编码,该网络是计算社会环境的多头自我发言模块的输入。另一方面,我们制定了一个加权插值来计算上一个观测框架中的速度和方向,以便计算可接受的目标点,这是从可驱动的HDMAP信息中提取的,这代表了我们的物理环境。最后,我们的发电机的输入是从多元正态分布中采样的白噪声矢量,而社会和物理环境则是其条件,以预测可见的轨迹。我们使用Argoverse运动预测基准1.1验证我们的方法,从而实现竞争性的单峰结果。
The design of a safe and reliable Autonomous Driving stack (ADS) is one of the most challenging tasks of our era. These ADS are expected to be driven in highly dynamic environments with full autonomy, and a reliability greater than human beings. In that sense, to efficiently and safely navigate through arbitrarily complex traffic scenarios, ADS must have the ability to forecast the future trajectories of surrounding actors. Current state-of-the-art models are typically based on Recurrent, Graph and Convolutional networks, achieving noticeable results in the context of vehicle prediction. In this paper we explore the influence of attention in generative models for motion prediction, considering both physical and social context to compute the most plausible trajectories. We first encode the past trajectories using a LSTM network, which serves as input to a Multi-Head Self-Attention module that computes the social context. On the other hand, we formulate a weighted interpolation to calculate the velocity and orientation in the last observation frame in order to calculate acceptable target points, extracted from the driveable of the HDMap information, which represents our physical context. Finally, the input of our generator is a white noise vector sampled from a multivariate normal distribution while the social and physical context are its conditions, in order to predict plausible trajectories. We validate our method using the Argoverse Motion Forecasting Benchmark 1.1, achieving competitive unimodal results.