论文标题

贝叶斯推断预计密度

Bayesian Inference with Projected Densities

论文作者

Everink, Jasper Marijn, Dong, Yiqiu, Andersen, Martin Skovgaard

论文摘要

约束是贝叶斯推论中先前信息的自然选择。在各种应用中,感兴趣的参数位于约束集的边界上。在本文中,我们使用一种隐式定义约束先验的方法,以使后验分配给约束集的边界的正概率。我们表明,通过将后质量投射到约束集上,我们在该集合的边界上获得了一个具有丰富概率结构的新后部。如果原始后验是高斯人,则可以有效地进行这样的投影。我们将方法应用于贝叶斯线性反问题,在这种情况下,可以通过反复求解约束最小二乘问题的问题,类似于MAP估计,但数据中有扰动。当组合成贝叶斯分层模型和约束集是一个多面体锥时,我们可以得出Gibbs采样器以有效地从分层模型中采样。为了显示投射后验的效果,我们将该方法应用于脱毛和计算机断层扫描示例。

Constraints are a natural choice for prior information in Bayesian inference. In various applications, the parameters of interest lie on the boundary of the constraint set. In this paper, we use a method that implicitly defines a constrained prior such that the posterior assigns positive probability to the boundary of the constraint set. We show that by projecting posterior mass onto the constraint set, we obtain a new posterior with a rich probabilistic structure on the boundary of that set. If the original posterior is a Gaussian, then such a projection can be done efficiently. We apply the method to Bayesian linear inverse problems, in which case samples can be obtained by repeatedly solving constrained least squares problems, similar to a MAP estimate, but with perturbations in the data. When combined into a Bayesian hierarchical model and the constraint set is a polyhedral cone, we can derive a Gibbs sampler to efficiently sample from the hierarchical model. To show the effect of projecting the posterior, we applied the method to deblurring and computed tomography examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源