论文标题
使用语言模型和变压器学习国际象棋
Learning Chess With Language Models and Transformers
论文作者
论文摘要
通过基于文本的符号表示棋盘游戏及其位置,可以实现NLP应用程序的可能性。语言模型可以帮助您深入了解各种有趣的问题,例如游戏的无监督学习规则,检测玩家行为模式,玩家归因,并最终学习游戏以击败最新技术。在这项研究中,我们将BERT模型应用于简单的NIM游戏,以在噪音的存在下进行几次学习架构的噪声分析。我们通过三个虚拟玩家,即Nim Guru,Random Player和Q-Learner分析了模型性能。在第二部分中,我们将游戏学习语言模型应用于国际象棋游戏,以及一系列带有详尽百科全书开口的大师游戏。最后,我们已经表明,模型实际上可以学习国际象棋游戏的规则,并且可以在类别的评分级别上与Stockfish进行游戏。
Representing a board game and its positions by text-based notation enables the possibility of NLP applications. Language models, can help gain insight into a variety of interesting problems such as unsupervised learning rules of a game, detecting player behavior patterns, player attribution, and ultimately learning the game to beat state of the art. In this study, we applied BERT models, first to the simple Nim game to analyze its performance in the presence of noise in a setup of a few-shot learning architecture. We analyzed the model performance via three virtual players, namely Nim Guru, Random player, and Q-learner. In the second part, we applied the game learning language model to the chess game, and a large set of grandmaster games with exhaustive encyclopedia openings. Finally, we have shown that model practically learns the rules of the chess game and can survive games against Stockfish at a category-A rating level.