论文标题

数据驱动排名和选择的最佳计算预算分配

Optimal Computing Budget Allocation for Data-driven Ranking and Selection

论文作者

Wang, Yuhao, Zhou, Enlu

论文摘要

在固定的预算排名和选择问题(R&S)问题中,一个旨在通过有效分配给定的计算预算来评估设计性能来确定有限数量的候选人之间的最佳设计。 R&S的经典方法通常假设系统中随机性的分布是完全已知的。在本文中,我们考虑了实际分布未知的实用情况,但可以从随着时间的时间批次到达的流输入数据估算。我们在这种动态设置中提出R&S问题作为多阶段问题,在此我们采用贝叶斯方法来估计分布并制定阶段优化问题以分配计算预算。我们通过应用大偏差理论来最大程度地提高错误选择概率的衰减率,从而表征了阶段问题的最佳条件。基于最佳条件并与分配估计的更新相结合,我们在流入数据下设计了两个R&S的顺序预算分配程序。从理论上讲,我们保证了所提出的程序的一致性和渐近最佳性。与平等分配策略和最佳计算预算分配算法的扩展相比,我们通过数值实验来证明实践效率。

In a fixed budget ranking and Selection (R&S) problem, one aims to identify the best design among a finite number of candidates by efficiently allocating the given computing budget to evaluate design performance. Classical methods for R&S usually assume the distribution of the randomness in the system is exactly known. In this paper, we consider the practical scenario where the true distribution is unknown but can be estimated from streaming input data that arrive in batches over time. We formulate the R&S problem in this dynamic setting as a multi-stage problem, where we adopt the Bayesian approach to estimate the distribution and formulate a stage-wise optimization problem to allocate the computing budget. We characterize the optimality conditions for the stage-wise problem by applying the large deviations theory to maximize the decay rate of probability of false selection. Based on the optimality conditions and combined with the updating of distribution estimates, we design two sequential budget allocation procedures for R&S under streaming input data. We theoretically guarantee the consistency and asymptotic optimality of the proposed procedures. We demonstrate the practical efficiency through numerical experiments in comparison with the equal allocation policy and an extension of the Optimal Computing Budget Allocation algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源