论文标题
基于脑电图特征的卷积神经网络的心理算术任务分类
Mental arithmetic task classification with convolutional neural network based on spectral-temporal features from EEG
论文作者
论文摘要
近年来,神经科学家对脑部计算机界面(BCI)设备的开发感兴趣。运动障碍患者可能会受益于BCIS作为通讯手段和恢复运动功能的手段。脑电图(EEG)是评估神经元活性的最常用之一。在许多计算机视觉应用中,深度神经网络(DNN)都显示出显着的优势。为了最终使用DNN,我们在这里提出了一个浅神经网络,该网络主要使用两个卷积神经网络(CNN)层,参数相对较少,并且快速从脑电图中学习光谱时期特征。我们将该模型与其他三个神经网络模型进行了比较,其深度不同于精神算术任务,该模型使用了针对患有运动障碍的患者和视觉功能下降的患者进行的眼神闭合状态。实验结果表明,浅CNN模型的表现优于所有其他模型,并达到了90.68%的最高分类精度。处理跨受试者分类问题也更加健壮:准确性的标准偏差仅为3%,而不是传统方法的15.6%。
In recent years, neuroscientists have been interested to the development of brain-computer interface (BCI) devices. Patients with motor disorders may benefit from BCIs as a means of communication and for the restoration of motor functions. Electroencephalography (EEG) is one of most used for evaluating the neuronal activity. In many computer vision applications, deep neural networks (DNN) show significant advantages. Towards to ultimate usage of DNN, we present here a shallow neural network that uses mainly two convolutional neural network (CNN) layers, with relatively few parameters and fast to learn spectral-temporal features from EEG. We compared this models to three other neural network models with different depths applied to a mental arithmetic task using eye-closed state adapted for patients suffering from motor disorders and a decline in visual functions. Experimental results showed that the shallow CNN model outperformed all the other models and achieved the highest classification accuracy of 90.68%. It's also more robust to deal with cross-subject classification issues: only 3% standard deviation of accuracy instead of 15.6% from conventional method.