论文标题

视觉文本分析的评估和实验设计的跨学科观点:位置论文

An Interdisciplinary Perspective on Evaluation and Experimental Design for Visual Text Analytics: Position Paper

论文作者

Kucher, Kostiantyn, Sultanum, Nicole, Daza, Angel, Simaki, Vasiliki, Skeppstedt, Maria, Plank, Barbara, Fekete, Jean-Daniel, Mahyar, Narges

论文摘要

适当的评估和实验设计对于经验科学是基础,尤其是在数据驱动领域。例如,由于语言的计算建模成功,研究结果对最终用户产生了越来越直接的影响。随着最终用户采用差距的减少,需求增加了,以确保研究社区和从业者开发的工具和模型可靠,可信赖,并且支持用户的目标。在该立场论文中,我们专注于评估视觉文本分析方法的问题。我们从可视化和自然语言处理社区中汲取了跨学科的观点,因为我们认为,视觉文本分析的设计和验证本身包括计算或视觉/交互方法的关注点。我们确定了四个关键的挑战群,用于评估视觉文本分析方法(数据歧义,实验设计,用户信任和“大图”问题),并从跨学科的角度为研究机会提供建议。

Appropriate evaluation and experimental design are fundamental for empirical sciences, particularly in data-driven fields. Due to the successes in computational modeling of languages, for instance, research outcomes are having an increasingly immediate impact on end users. As the gap in adoption by end users decreases, the need increases to ensure that tools and models developed by the research communities and practitioners are reliable, trustworthy, and supportive of the users in their goals. In this position paper, we focus on the issues of evaluating visual text analytics approaches. We take an interdisciplinary perspective from the visualization and natural language processing communities, as we argue that the design and validation of visual text analytics include concerns beyond computational or visual/interactive methods on their own. We identify four key groups of challenges for evaluating visual text analytics approaches (data ambiguity, experimental design, user trust, and "big picture" concerns) and provide suggestions for research opportunities from an interdisciplinary perspective.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源