论文标题

非本地NLS方程的全球保守解决方案超出了爆炸

Global conservative solutions of the nonlocal NLS equation beyond blow-up

论文作者

Rybalko, Yan, Shepelsky, Dmitry

论文摘要

我们考虑可集成的非局部非线性schrödinger(nnls)方程的库奇问题H^{1,1}(\ Mathbb {r})$。众所周知,NNLS方程是可以集成的,并且具有孤子溶液,可以具有孤立的有限时间爆破点。这项工作的主要目的是提出一个合适的概念,以延续较弱的$ h^{1,1} $的库奇问题的本地解决方案(尤其是那些承认长期孤儿解决方案的解决方案)以外的奇异性。我们的主要工具是以Riemann-Hilbert问题形式的反向散射转换方法与非线性分散方程的PDE存在理论相结合。

We consider the Cauchy problem for the integrable nonlocal nonlinear Schrödinger (NNLS) equation $ \I\partial_t q(x,t)+\partial_{x}^2q(x,t)+2σq^{2}(x,t)\overline{q(-x,t)}=0 $ with initial data $q(x,0)\in H^{1,1}(\mathbb{R})$. It is known that the NNLS equation is integrable and it has soliton solutions, which can have isolated finite time blow-up points. The main aim of this work is to propose a suitable concept for continuation of weak $H^{1,1}$ local solutions of the general Cauchy problem (particularly, those admitting long-time soliton resolution) beyond possible singularities. Our main tool is the inverse scattering transform method in the form of the Riemann-Hilbert problem combined with the PDE existence theory for nonlinear dispersive equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源