论文标题
家庭无人机的深度学习:寻找最佳体系结构
Deep Learning on Home Drone: Searching for the Optimal Architecture
论文作者
论文摘要
我们建议第一个通过对弱的微型计算机进行深入学习,例如Raspberry Pi Zero Zero V2(其价格为\ 15美元),该系统通过深度学习进行实时的语义细分。特别是,由于Raspberry Pi的重量低于$ 16 $,并且其大小是信用卡的一半,因此我们可以轻松地将其连接到普通的商业DJI Tello Toy-Drone(<\ $ 100,<90克,98 $ \ times $ \ times $ \ times $ 92.5 $ \ times $ \ times $ 41毫米)。结果是可以从板载单眼RGB摄像头的视频流(无GPS或LIDAR传感器)实时检测和分类对象的自主无人机(无笔记本电脑或人类)。伴侣视频展示了这款Tello无人机如何扫描实验室的人(例如使用消防员或安全部队)以及实验室外的空停车位。 现有的深度学习解决方案要么在这种物联网设备上实时计算要么太慢,要么提供不切实际的质量结果。我们的主要挑战是设计一个系统,该系统在网络,深度学习平台/框架,压缩技术和压缩比的众多组合中占据了各个世界。为此,我们提供了一种有效的搜索算法,旨在找到最佳组合,从而导致网络运行时间与其准确性/性能之间的最佳权衡。
We suggest the first system that runs real-time semantic segmentation via deep learning on a weak micro-computer such as the Raspberry Pi Zero v2 (whose price was \$15) attached to a toy-drone. In particular, since the Raspberry Pi weighs less than $16$ grams, and its size is half of a credit card, we could easily attach it to the common commercial DJI Tello toy-drone (<\$100, <90 grams, 98 $\times$ 92.5 $\times$ 41 mm). The result is an autonomous drone (no laptop nor human in the loop) that can detect and classify objects in real-time from a video stream of an on-board monocular RGB camera (no GPS or LIDAR sensors). The companion videos demonstrate how this Tello drone scans the lab for people (e.g. for the use of firefighters or security forces) and for an empty parking slot outside the lab. Existing deep learning solutions are either much too slow for real-time computation on such IoT devices, or provide results of impractical quality. Our main challenge was to design a system that takes the best of all worlds among numerous combinations of networks, deep learning platforms/frameworks, compression techniques, and compression ratios. To this end, we provide an efficient searching algorithm that aims to find the optimal combination which results in the best tradeoff between the network running time and its accuracy/performance.