论文标题
Feynman积分的最小Picard-Fuchs运营商的算法
Algorithms for minimal Picard-Fuchs operators of Feynman integrals
论文作者
论文摘要
在偶数时空尺寸中,多环Feynman积分是投影空间中合理函数的积分。通过使用一种扩展Griffiths的算法 - 对具有奇异性的投影性超曲面的情况减少,我们就相对于大型大型多弹药feynman积分的运动学参数得出了fuchsian线性微分方程,即picard-fuchs方程。通过这种方法,我们获得了Feynman积分的差分运算符,以供高高的多重性和高循环订单。在本文研究的大多数情况下,使用最近的分解算法,我们给出了最小的阶差分运算符。我们的结果之一是,Picards--fuchs操作员的统一$ n-1 $ n-1 $ - 环日落在二维中不可或缺的积分为$ 2^{n} - \ binom {n+1} {\ left \ left \ left \ lfloor \ frac {n+1}积分是Calabi-Yau的相对时期$ n-2 $。我们已经明确检查了此,直到六个循环。同样,我们还获得了一个特定的PICARD-订单11的运算符,用于大规模的五点tardigrade非平面两环在四个维度上进行仿制的质量和运动型配置,这是$ k3 $的表面,这表明与Picard编号11一起出现。 liouvillian或椭圆形解决方案。
In even space-time dimensions the multi-loop Feynman integrals are integrals of rational function in projective space. By using an algorithm that extends the Griffiths--Dwork reduction for the case of projective hypersurfaces with singularities, we derive Fuchsian linear differential equations, the Picard--Fuchs equations, with respect to kinematic parameters for a large class of massive multi-loop Feynman integrals. With this approach we obtain the differential operator for Feynman integrals to high multiplicities and high loop orders. Using recent factorisation algorithms we give the minimal order differential operator in most of the cases studied in this paper. Amongst our results are that the order of Picard--Fuchs operator for the generic massive two-point $n-1$-loop sunset integral in two-dimensions is $2^{n}-\binom{n+1}{\left\lfloor \frac{n+1}{2}\right\rfloor }$ supporting the conjecture that the sunset Feynman integrals are relative periods of Calabi--Yau of dimensions $n-2$. We have checked this explicitly till six loops. As well, we obtain a particular Picard--Fuchs operator of order 11 for the massive five-point tardigrade non-planar two-loop integral in four dimensions for generic mass and kinematic configurations, suggesting that it arises from $K3$ surface with Picard number 11. We determine as well Picard--Fuchs operators of two-loop graphs with various multiplicities in four dimensions, finding Fuchsian differential operators with either Liouvillian or elliptic solutions.