论文标题

$ {\ cal n} = 4 $ super-yang-mills的一个不错的两循环近代到次要振幅

A nice two-loop next-to-next-to-MHV amplitude in ${\cal N}=4$ super-Yang-Mills

论文作者

He, Song, Li, Zhenjie, Zhang, Chi

论文摘要

我们研究了8点近隔至最大的甲基竞争(n $ {}^2 $ MHV)的标量组件,在$ {\ cal n} = 4 $ super-yang-mills理论中以两环级别为单位。它具有与四个盒平方根的倒数成正比的领先奇异性,并且仅从两种类型的非平凡积分的贡献中,具有单环红外(IR)差异。我们通过采用某些有限的,双符号不变的积分来计算这种两环的8点积分,并在减去差异后很好地赋予了IR-SAVE比率函数。作为第一个真正的两环n $ {}^2 $ MHV振幅明确计算出来,我们在其符号和字母中发现了出色的结构:与近代的MHV(NMHV)情况相似,仍然有9个代数字母与正方形相关,后者也成为第一次的字母;与NMHV案例不同,此类代数字母出现在第二,第三和最后一个条件的一个或全部,带有三个奇数字母的部分特别简单。

We study a scalar component of the 8-point next-to-next-to-maximally-helicity-violating (N${}^2$MHV) amplitude at two-loop level in ${\cal N}=4$ super-Yang-Mills theory; it has a leading singularity proportional to the inverse of the four-mass-box square root and receives contributions from only two types of non-trivial integrals with one-loop infrared (IR) divergences. We compute such two-loop 8-point integrals by taking (double-)collinear limits of certain finite, dual-conformal-invariant integrals, and they nicely give the IR-safe ratio function after subtracting divergences. As the first genuine two-loop N${}^2$MHV amplitude computed explicitly, we find remarkable structures in its symbol and alphabet: similar to the next-to-MHV (NMHV) case, there are still 9 algebraic letters associated with the square root, and the latter also becomes a letter for the first time; unlike the NMHV case, such algebraic letters appear at either one or all of the second, third and last entry, and the part with three odd letters is particularly simple.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源