论文标题
复杂的双曲线形式为Weil-Petersson形式
The complex hyperbolic form as a Weil-Petersson form
论文作者
论文摘要
对于穿刺球的模量空间,我们发现在其上定义的两种符号形式之间的新等价。也就是说,通过将这个模量空间的元素视为球体上的奇异欧几里得指标,我们对复杂双曲线形式进行解释,即模量空间上复杂双曲线结构的kähler形式,作为一种魏尔 - 彼得森形式。
For the moduli space of the punctured spheres, we find a new equality between two symplectic forms defined on it. Namely, by treating the elements of this moduli space as the singular Euclidean metrics on a sphere, we give an interpretation of the complex hyperbolic form, i.e. the Kähler form of the complex hyperbolic structure on the moduli space, as a kind of Weil-Petersson form.