论文标题
基于到达方向和直接到革命能量比的声学大满贯
Acoustic SLAM based on the Direction-of-Arrival and the Direct-to-Reverberant Energy Ratio
论文作者
论文摘要
本文提出了一种新的方法,该方法融合了混响场中的声学测量和低临界性惯性测量单元(IMU)运动报告,以同时定位和映射(SLAM)。与仅使用声学数据进行到达方向(DOA)估计值的现有研究不同的是,源与传感器的距离是通过直接到连续的能量比(DRR)计算的,并用作新的约束,以消除运动报告中的非线性噪声。应用粒子过滤器估计临界距离,这是将源距离与DRR关联的关键。使用密钥帧方法来消除源位置估计向机器人的偏差。拟议的DOA-DRR声学大满贯(D-D大满贯)设计用于三维运动,适合大多数机器人。该方法是第一个在现实世界中仅包含声学数据和IMU测量值的现实世界室内场景数据集上验证的声学大满贯算法。与以前的方法相比,D-D SLAM在定位机器人并从现实世界室内数据集构建源地图方面具有可接受的性能。平均位置精度为0.48 m,而源位置误差在2.8 s内收敛到小于0.25 m。这些结果证明了D-D SLAM在现实世界室内场景中的有效性,这可能在灾难发生后的灾害中特别有用,即环境有雾,即不适合光或激光照射。
This paper proposes a new method that fuses acoustic measurements in the reverberation field and low-accuracy inertial measurement unit (IMU) motion reports for simultaneous localization and mapping (SLAM). Different from existing studies that only use acoustic data for direction-of-arrival (DoA) estimates, the source's distance from sensors is calculated with the direct-to-reverberant energy ratio (DRR) and applied as a new constraint to eliminate the nonlinear noise from motion reports. A particle filter is applied to estimate the critical distance, which is key for associating the source's distance with the DRR. A keyframe method is used to eliminate the deviation of the source position estimation toward the robot. The proposed DoA-DRR acoustic SLAM (D-D SLAM) is designed for three-dimensional motion and is suitable for most robots. The method is the first acoustic SLAM algorithm that has been validated on a real-world indoor scene dataset that contains only acoustic data and IMU measurements. Compared with previous methods, D-D SLAM has acceptable performance in locating the robot and building a source map from a real-world indoor dataset. The average location accuracy is 0.48 m, while the source position error converges to less than 0.25 m within 2.8 s. These results prove the effectiveness of D-D SLAM in real-world indoor scenes, which may be especially useful in search and rescue missions after disasters where the environment is foggy, i.e., unsuitable for light or laser irradiation.