论文标题
莫特原子极限的相互作用拓扑量子化学
Interacting topological quantum chemistry of Mott atomic limits
论文作者
论文摘要
拓扑量子化学(TQC)是识别(非相互作用)拓扑材料的成功框架。基于最大动量的Bloch特征状态的对称特征值,这是可以从第一原理计算中获得的,可以将带结构归类为原子极限,换句话说,换句话说,与各自晶体上的独立电子轨道结成了独立的电子轨道,或者是拓扑的。对于相互作用的系统,没有单粒子带结构,因此,TQC机械磨碎了。我们开发了一个类似于TQC的框架,但采用$ n $ - 粒子格林的功能来对交互系统进行分类。从根本上讲,我们定义了一类相互作用的参考状态,这些状态概括了原子极限的概念,我们称之为莫特原子限制,并且是对称性受保护的拓扑状态。我们的形式主义允许对这些参考状态进行完全分类(具有$ n = 2 $),它们本身可以代表对称性受保护的拓扑状态。我们在一维中对此类状态进行了全面的分类,并在模型系统上提供了数值结果。因此,我们建立了莫特原子极限状态,作为对相互作用系统原子限制的概括。
Topological quantum chemistry (TQC) is a successful framework for identifying (noninteracting) topological materials. Based on the symmetry eigenvalues of Bloch eigenstates at maximal momenta, which are attainable from first principles calculations, a band structure can either be classified as an atomic limit, in other words adiabatically connected to independent electronic orbitals on the respective crystal lattice, or it is topological. For interacting systems, there is no single-particle band structure and hence, the TQC machinery grinds to a halt. We develop a framework analogous to TQC, but employing $n$-particle Green's function to classify interacting systems. Fundamentally, we define a class of interacting reference states that generalize the notion of atomic limits, which we call Mott atomic limits, and are symmetry protected topological states. Our formalism allows to fully classify these reference states (with $n=2$), which can themselves represent symmetry protected topological states. We present a comprehensive classification of such states in one-dimension and provide numerical results on model systems. With this, we establish Mott atomic limit states as a generalization of the atomic limits to interacting systems.