论文标题
大N代数和广义熵
Large N algebras and generalized entropy
论文作者
论文摘要
我们构建了一个II型$ _ \ infty $ von neumann代数,该代数描述了微型典型合奏中的广告/CFT中的大型$ n $物理学,其中无需包括扰动$ 1/n $校正。仅使用外推词字典,我们表明该代数上半经典状态的熵在黑洞分叉表面的广义熵上是双重双重的。从边界的角度来看,这构成了QES处方的特殊情况的推导,而无需使用欧几里得重力或复制品。从纯粹的批量角度来看,它是量子校正的贝肯斯坦 - 鹰鹰式公式作为$ g \ to lorentzian有效野外理论量子重力的$ g \至0 $限制的显式代数的熵。在一个极限的情况下,首先允许黑洞平衡,然后再重新启用黑洞,我们表明,广义第二定律是在痕量保留包含物下代数熵单调性的直接结果。最后,通过考虑激发不仅仅是争夺时间的激发,我们构建了一个“免费产品” von Neumann代数,该代数描述了由冲击支撑的长虫洞的半经典物理学。我们计算该代数的rényi熵,并表明它们等于与虫洞中与量子极端表面相关的马鞍的总和。然而,令人惊讶的是,与“凸起”量子极端表面相关的马鞍造成了负符号。
We construct a Type II$_\infty$ von Neumann algebra that describes the large $N$ physics of single-trace operators in AdS/CFT in the microcanonical ensemble, where there is no need to include perturbative $1/N$ corrections. Using only the extrapolate dictionary, we show that the entropy of semiclassical states on this algebra is holographically dual to the generalized entropy of the black hole bifurcation surface. From a boundary perspective, this constitutes a derivation of a special case of the QES prescription without any use of Euclidean gravity or replicas; from a purely bulk perspective, it is a derivation of the quantum-corrected Bekenstein-Hawking formula as the entropy of an explicit algebra in the $G \to 0$ limit of Lorentzian effective field theory quantum gravity. In a limit where a black hole is first allowed to equilibrate and then is later potentially re-excited, we show that the generalized second law is a direct consequence of the monotonicity of the entropy of algebras under trace-preserving inclusions. Finally, by considering excitations that are separated by more than a scrambling time we construct a "free product" von Neumann algebra that describes the semiclassical physics of long wormholes supported by shocks. We compute Rényi entropies for this algebra and show that they are equal to a sum over saddles associated to quantum extremal surfaces in the wormhole. Surprisingly, however, the saddles associated to "bulge" quantum extremal surfaces contribute with a negative sign.