论文标题
弯曲的绝对L-内代代数的整合理论
The integration theory of curved absolute L-infinity algebras
论文作者
论文摘要
在本文中,我们介绍了弯曲的绝对$ \ mathcal {l} _ \ infty $ -Algebra的概念,该结构就像弯曲的$ \ Mathcal {l} _ \ infty $ algebra,所有无限的操作总和按定义为定义很好地定义。我们通过在整合理论中引入两种新方法来发展他们的整合理论:完整的条形结构和内在模型类别结构。它们使我们能够快速和从概念的角度概括该理论的所有基本结果。我们将理论应用于理性同义理论,并表明弯曲的绝对$ \ Mathcal {l} _ \ infty $ -Algebras为我们提供了有限类型的nilpotent空间的合理模型,而没有任何指向或连接的假设。此外,我们表明,理性空间的同源性可以作为完整的棒构建的同源性回收。我们还为有理映射空间构建了新的较小模型,而没有任何假设在源简单集上。应用程序的另一个来源是变形理论:在代数方面,我们表明弯曲的绝对$ \ Mathcal {l} _ \ infty $ -Algebras是强制性的,以编码(CO)-Algebras的$ \ infty $ -Morphists的变形络合物。在几何方面,我们构建了一个弯曲的绝对$ \ mathcal {l} _ \ infty $ -Algebra,从派生的仿射堆栈中构建,并表明它编码了居住在基本场的任何有限场范围扩展中的任何有限点的正式几何集合。
In this article, we introduce the notion of a curved absolute $\mathcal{L}_\infty$-algebra, a structure that behaves like a curved $\mathcal{L}_\infty$-algebra where all infinite sums of operations are well-defined by definition. We develop their integration theory by introducing two new methods in integration theory: the complete Bar construction and intrinsic model category structures. They allow us to generalize all essential results of this theory quickly and from a conceptual point of view. We provide applications of our theory to rational homotopy theory, and show that curved absolute $\mathcal{L}_\infty$-algebras provide us with rational models for finite type nilpotent spaces without any pointed or connected assumptions. Furthermore, we show that the homology of rational spaces can be recovered as the homology of the complete Bar construction. We also construct new smaller models for rational mapping spaces without any hypothesis on the source simplicial set. Another source of applications is deformation theory: on the algebraic side, we show that curved absolute $\mathcal{L}_\infty$-algebras are mandatory in order to encode the deformation complexes of $\infty$-morphisms of (co)-algebras. On the geometrical side, we construct a curved absolute $\mathcal{L}_\infty$-algebra from a derived affine stack and show that it encodes the formal geometry of any finite collection of points living in any finite field extension of the base field.