论文标题
Voxceleb扬声器识别挑战2022的返回零系统
The ReturnZero System for VoxCeleb Speaker Recognition Challenge 2022
论文作者
论文摘要
在本文中,我们描述了RTZR Voxceleb扬声器识别挑战2022(VOXSRC-22)的最高得分提交,在封闭的数据集中,扬声器验证轨道1。最高的执行系统是7型型号,其中包含3种不同类型的模型架构。我们专注于培训模型以学习周期性信息。因此,所有型号均以4-6秒的镜头训练,每种话语。此外,我们采用了较大的保证金微调策略,该策略在我们的某些融合模型的先前挑战上表现出良好的表现。在评估过程中,我们应用了具有自适应对称归一化(AS-NORM)和矩阵得分平均值(MSA)的评分方法。最后,我们将模型与逻辑回归混合在一起,以融合所有受过训练的模型。最终提交在VOXSRC22测试集上实现了0.165 DCF和2.912%的EER。
In this paper, we describe the top-scoring submissions for team RTZR VoxCeleb Speaker Recognition Challenge 2022 (VoxSRC-22) in the closed dataset, speaker verification Track 1. The top performed system is a fusion of 7 models, which contains 3 different types of model architectures. We focus on training models to learn extra-temporal information. Therefore, all models were trained with 4-6 second frames for each utterance. Also, we apply the Large Margin Fine-tuning strategy which has shown good performance on the previous challenges for some of our fusion models. While the evaluation process, we apply the scoring methods with adaptive symmetric normalization (AS-Norm) and matrix score average (MSA). Finally, we mix up models with logistic regression to fuse all the trained models. The final submission achieves 0.165 DCF and 2.912% EER on the VoxSRC22 test set.