论文标题

阿曼南部使用贝叶斯建模

Multi-Tracer Groundwater Dating in Southern Oman using Bayesian Modelling

论文作者

Rädle, Viola, Kersting, Arne, Schmidt, Maximilian, Ringena, Lisa, Robertz, Julian, Aeschbach, Werner, Oberthaler, Markus, Müller, Thomas

论文摘要

在评估淡水稀缺区域的含水层系统的范围内,对过境时间的估计是量化地下水抽象效果的重要步骤。不同形状,平均停留时间和贡献的过境时间分布用于表示含水层系统中的水文条件,通常是根据测量的示踪剂浓度来通过反向建模来推断的。在这项研究中,在阿曼南部的Salalah平原进行了多个追踪抽样运动,包括CFC,SF6、39AR,14C和4HE。根据三个示踪剂的数据,假定并使用贝叶斯统计数据对具有六个年龄箱的非参数模型和具有六个年龄箱的非参数模型进行了评估。在马尔可夫链蒙特卡洛方法中,确定了最大似然参数估计值及其不确定性。使用贝叶斯因子和一对一的交叉验证评估模型性能。两种模型都表明,Salalah平原上的地下水是由30岁以下的非常年轻的组成部分组成的,一个非常旧的组件超过1,000年,非参数模型的性能略高于DMMIX模型。除一个井外,所有井都表现出合理的合适性。我们的结果支持贝叶斯建模在水文学中的相关性以及非参数模型的潜力,以充分代表含水层动力学。

In the scope of assessing aquifer systems in areas where freshwater is scarce, estimation of transit times is a vital step to quantify the effect of groundwater abstraction. Transit time distributions of different shapes, mean residence times, and contributions are used to represent the hydrogeological conditions in aquifer systems and are typically inferred from measured tracer concentrations by inverse modeling. In this study, a multi-tracer sampling campaign was conducted in the Salalah Plain in Southern Oman including CFCs, SF6, 39Ar, 14C, and 4He. Based on the data of three tracers, a two-component Dispersion Model (DMmix) and a nonparametric model with six age bins were assumed and evaluated using Bayesian statistics. In a Markov Chain Monte Carlo approach, the maximum likelihood parameter estimates and their uncertainties were determined. Model performance was assessed using Bayes factor and leave-one-out cross-validation. Both models suggest that the groundwater in the Salalah Plain is composed of a very young component below 30 yr and a very old component beyond 1,000 yr, with the nonparametric model performing slightly better than the DMmix model. All wells except one exhibit reasonable goodness of fit. Our results support the relevance of Bayesian modeling in hydrology and the potential of nonparametric models for an adequate representation of aquifer dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源