论文标题
MAC:一种用于特征学习和重组的元学习方法
MAC: A Meta-Learning Approach for Feature Learning and Recombination
论文作者
论文摘要
基于优化的元学习旨在学习初始化,以便在一些梯度更新中可以学习新的看不见的任务。模型不可知的元学习(MAML)是一种包括两个优化回路的基准算法。内部循环致力于学习一项新任务,并且外循环导致元化。但是,Anil(几乎没有内部环)算法表明,功能重用是在MAML中快速学习的替代方法。因此,元定位阶段使MAML用于特征重用,并消除了快速学习的需求。与Anil相反,我们假设在元测试过程中可能需要学习新功能。从非相似分布中进行的一项新的看不见的任务将需要快速学习,并重用现有功能。在本文中,我们调用神经网络的宽度二元性,其中,我们通过添加额外的计算单元(ACU)来增加网络的宽度。 ACUS可以在元测试任务中学习新的原子特征,而相关的增加宽度有助于转发通行证中的信息传播。新学习的功能与最后一层的现有功能相结合,用于元学习。实验结果表明,我们提出的MAC方法的表现优于非相似任务分布的现有Anil算法,大约13%(5-SHOT任务设置)
Optimization-based meta-learning aims to learn an initialization so that a new unseen task can be learned within a few gradient updates. Model Agnostic Meta-Learning (MAML) is a benchmark algorithm comprising two optimization loops. The inner loop is dedicated to learning a new task and the outer loop leads to meta-initialization. However, ANIL (almost no inner loop) algorithm shows that feature reuse is an alternative to rapid learning in MAML. Thus, the meta-initialization phase makes MAML primed for feature reuse and obviates the need for rapid learning. Contrary to ANIL, we hypothesize that there may be a need to learn new features during meta-testing. A new unseen task from non-similar distribution would necessitate rapid learning in addition reuse and recombination of existing features. In this paper, we invoke the width-depth duality of neural networks, wherein, we increase the width of the network by adding extra computational units (ACU). The ACUs enable the learning of new atomic features in the meta-testing task, and the associated increased width facilitates information propagation in the forwarding pass. The newly learnt features combine with existing features in the last layer for meta-learning. Experimental results show that our proposed MAC method outperformed existing ANIL algorithm for non-similar task distribution by approximately 13% (5-shot task setting)