论文标题

反事实均值优化

Counterfactual Mean-variance Optimization

论文作者

Kim, Kwangho, Mishler, Alan, Zubizarreta, José R.

论文摘要

我们研究反事实均值优化,其中均值和方差定义为反事实分布的功能。优化问题在指定的干预措施引起的假设情况下定义了各种约束下的最佳资源分配,这可能与观察到的世界有很大不同。我们为反事实均值优化问题的最佳解决方案提出了双重稳健风格的估计器,并为其渐近分布提供了封闭形式的表达。我们的分析表明,提出的估计器即使在融合了非参数方法时也可以达到快速参数收敛速率。我们进一步解决了反事实协方差估计器的校准,以增强所提出的最佳解决方案估计器的有限样本性能。最后,我们通过模拟研究评估了提出的方法,并证明了它们在涉及医疗保健政策和金融投资组合构建的现实世界中的适用性。

We study a counterfactual mean-variance optimization, where the mean and variance are defined as functionals of counterfactual distributions. The optimization problem defines the optimal resource allocation under various constraints in a hypothetical scenario induced by a specified intervention, which may differ substantially from the observed world. We propose a doubly robust-style estimator for the optimal solution to the counterfactual mean-variance optimization problem and derive a closed-form expression for its asymptotic distribution. Our analysis shows that the proposed estimator attains fast parametric convergence rates while enabling tractable inference, even when incorporating nonparametric methods. We further address the calibration of the counterfactual covariance estimator to enhance the finite-sample performance of the proposed optimal solution estimators. Finally, we evaluate the proposed methods through simulation studies and demonstrate their applicability in real-world problems involving healthcare policy and financial portfolio construction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源