论文标题

MSA-GCN:步态情绪识别的多尺度自适应图卷积网络

MSA-GCN:Multiscale Adaptive Graph Convolution Network for Gait Emotion Recognition

论文作者

Yin, Yunfei, Jing, Li, Huang, Faliang, Yang, Guangchao, Wang, Zhuowei

论文摘要

步态情绪识别在智能系统中起着至关重要的作用。随着时间的推移,大多数现有方法通过关注当地行动来识别情绪。但是,他们忽略了时间域中不同情绪的有效距离是不同的,而且步行过程中的当地行动非常相似。因此,情绪应由全球国家而不是间接的地方行动来表示。为了解决这些问题,这项工作通过构建动态的时间接受场并设计多尺度信息聚集以识别情绪,在这项工作中介绍了一种新型的多量表自适应图卷积网络(MSA-GCN)。在我们的模型中,自适应选择性时空图卷积旨在动态选择卷积内核,以获得不同情绪的软时空特征。此外,跨尺度映射融合机制(CSFM)旨在构建自适应邻接矩阵,以增强信息相互作用并降低冗余。与以前的最新方法相比,所提出的方法在两个公共数据集上实现了最佳性能,将地图提高了2 \%。我们还进行了广泛的消融研究,以显示不同组件在我们的方法中的有效性。

Gait emotion recognition plays a crucial role in the intelligent system. Most of the existing methods recognize emotions by focusing on local actions over time. However, they ignore that the effective distances of different emotions in the time domain are different, and the local actions during walking are quite similar. Thus, emotions should be represented by global states instead of indirect local actions. To address these issues, a novel Multi Scale Adaptive Graph Convolution Network (MSA-GCN) is presented in this work through constructing dynamic temporal receptive fields and designing multiscale information aggregation to recognize emotions. In our model, a adaptive selective spatial-temporal graph convolution is designed to select the convolution kernel dynamically to obtain the soft spatio-temporal features of different emotions. Moreover, a Cross-Scale mapping Fusion Mechanism (CSFM) is designed to construct an adaptive adjacency matrix to enhance information interaction and reduce redundancy. Compared with previous state-of-the-art methods, the proposed method achieves the best performance on two public datasets, improving the mAP by 2\%. We also conduct extensive ablations studies to show the effectiveness of different components in our methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源