论文标题
Sudakov radial型log凹入产品的产品
Sudakov minoration for products of radial-type log concave measures
论文作者
论文摘要
研究随机过程的下限的第一步是证明特殊特性-Sudakov Minoration。该属性意味着,如果从索引集中有一定数量的点分开,那么我们可以为该过程上限的平均值提供最佳类型的下限。与通用的封闭参数一起,该属性可用于充分表征随机过程至上的平均值。在本文中,我们证明了基于径向型日志凹度尺寸的规范过程的属性。
The first step to study lower bounds for a stochastic process is to prove a special property - Sudakov minoration. The property means that if a certain number of points from the index set are well separated then we can provide an optimal type lower bound for the mean value of the supremum of the process. Together with the generic chaining argument the property can be used to fully characterize the mean value of the supremum of the stochastic process. In this article we prove the property for canonical processes based on radial-type log concave measures.