论文标题

可扩展的数据存储用于光伏监控系统

Scalable data storage for PV monitoring systems

论文作者

Kladas, Anastasios, Herteleer, Bert, Cappelle, Jan

论文摘要

有效的PV研究包括来自具有不同特征的多个实验的延长数据监视,需要一个可扩展的支持系统来处理所有收集的信息。本文介绍了一个关系数据库的开发,用于托管所有必要的信息,用于数据建模,比较分析和O \&M系统。 Ramer-Douglas-Peucker算法和TimeScaledB压缩用于减少时间序列数据的大小并提高查询的性能。提出了一种决策算法,用于选择Ramer-Douglas-Peucker算法的最佳输入,以确保最大的磁盘空间节省,同时又不丢失任何必要的信息。此外,还提供了实现相同数据库的替代方法。

Efficient PV research which includes a prolonged data monitoring from multiple experiments with different characteristics, requires a scalable supporting system to handle all of the collected information. This paper presents the development of a relational database for hosting all the necessary information for data modeling, comparative analysis and O\&M systems. Ramer-Douglas-Peucker algorithm and Timescaledb compression are used to decrease the size of the time-series data and increase the performance of the queries. A decision-making algorithm is presented for selecting the optimal inputs to the Ramer-Douglas-Peucker algorithm to ensure the maximum disk space savings while not losing any of the necessary information. Furthermore, alternative ways of implementing the same database are provided.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源